PROJECT NARRATIVE

Prepared For

METRO TREATMENT CENETER OF NEW HAMPSHIRE, LP 96 HALL STREET **MAP 793Z LOT 23** CONCORD, NEW HAMPSHIRE

April 20, 2020

Prepared for:

Metro Treatment Center of New Hampshire 100 Hall Street Concord, NH 03301

Prepared By:

119 Storrs Street, Suite 201 Fax 603-226-1160 www.northpointeng.com

Project No. 21102

TABLE OF CONTENTS

I. Project Narrative

- Property Description
- Proposed Project Description

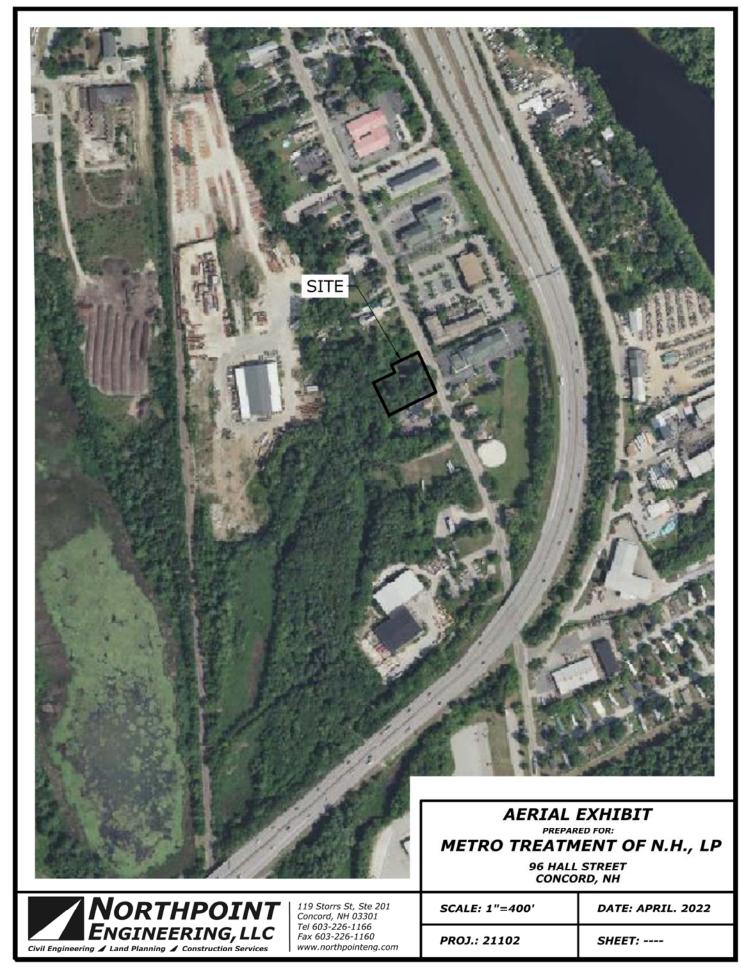
II. Aerial Photograph Exhibits

III. Site Photograph Exhibits

IV. Selected Site Improvement Plan Sheets (8 ½ x 11)

- Site Plan
- V. Major Site Plan Checklist

Property Description


The subject parcel of land is located at 96 Hall Street in Concord, New Hampshire and is currently an undeveloped residential lot. The parcel was previously a residential property with a single family home located on the parcel. The home has been removed and the foundation has been filled in. The driveway entrance for the home remains on Hall Street however the current condition of the property are undeveloped.

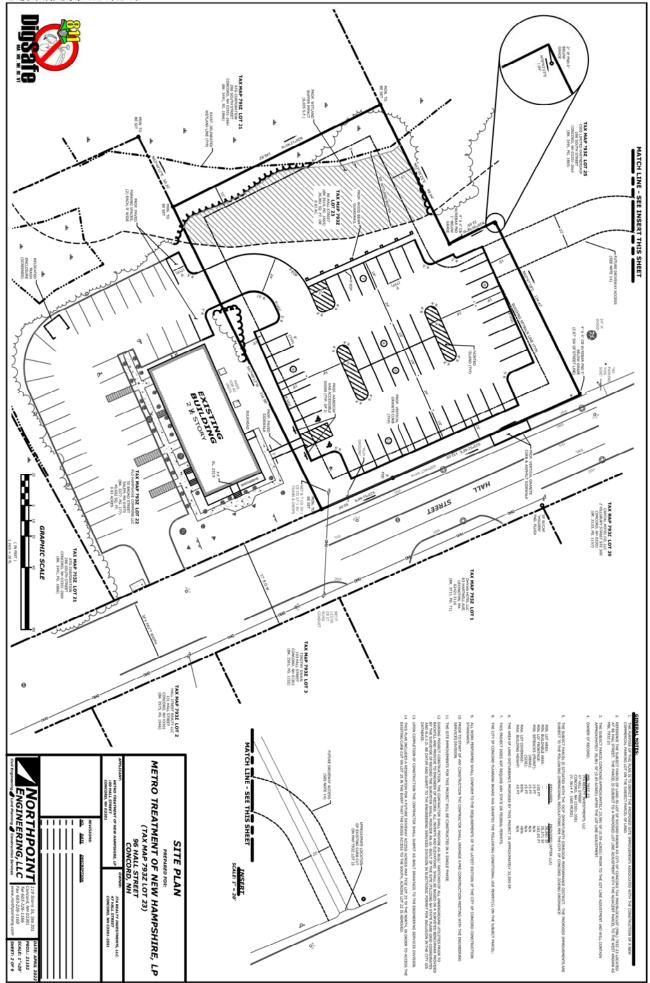
The parcel is bordered to the south by the Metro Treatment Center of New Hampshire, to the west by a scrap metal recycling facility, to north by a residential property, and to the east (across Hall Street) by the Best Western Hotel.

Project Description

The proposed improvements include construction of a new commercial parking lot that will serve the existing Metro Treatment Center of New Hampshire located on the adjacent parcel to the south at 100 Hall Street. The existing curb cut on the subject parcel will be removed and a new driveway connection will be added that connects the new parking lot to the existing parking lot at 100 Hall Street. Related site improvements include landscape, site lighting and stormwater management. The parking expansion will provide relief to the existing parking demands for the Metro Treatment Clinic of New Hampshire. This work will require a conditional use permit to disturb the wetland buffer, located on site, for construction of the stormwater management system.

II. Aerial Photograph Exhibits

III. Site Photograph Exhibits


Picture 1: View of site looking north

Picture 2: View Hall Street looking East from the southern property line.

IV. Selected Site Improvement Plan Sheets (8 ½ x 11)

119 Storrs Street, Suite 201 Concord, NH 03301 Tel 603-226-1166 Fax 603-226-1160 www.northpointeng.com

May 9, 2022

City of Concord Planning Board c/o City of Concord Planning Dept 41 Green Street Concord, NH 03301

Subject: Waiver Requests Letter Supplement Metro Treatment Center of New Hampshire 96 Hall Street (Map 793Z Lot 23) Concord, New Hampshire NPE Proj. No. 21102

Dear Board Members,

On behalf of the Applicant and property owners the referenced Site Plan application, I am formally requesting that the Planning Board grant the following waivers from the City of Concord Site Plan Regulations:

- Section 6.03(2)(c): Site plan application stages
- Section 11.05: Determination of completeness

The waivers requested are to allow the included application to be scheduled for a public hearing on the same date that it is to be scheduled for determination of completeness. That expected date being May 18th, 2022.

Granting this waiver request will not be detrimental to public safety, health, welfare or injurious to other properties. Due to scheduling constraints with construction contractors a project of this size is only reasonably able to be built early in the construction season. This waiver allows for the project to be completed within the calendar year, providing the needed additional parking for the staff and patients of Metro Treatment Center of New Hampshire as soon as possible. This project can be completed on an expedited timeline because of the flat geography and minimal conflicts with surrounding properties and existing utilities. The granting of this waiver will not vary the provisions of the Zoning Ordinance, Master Plan Reports or Official Map any in any manner.

Sincerely,

- M Drego

Ian McGregor, PE Project Engineer Northpoint Engineering, LLC

EXHIBIT "A" Page 1 of 3

<u>Conditional Use Permit</u> associated with Site Plan Application for Metro Treatment Center of New Hampshire 96 Hall Street (Map 793Z Lot 23) Concord, New Hampshire

I. <u>Proposal Outline:</u>

The subject parcel of land is located at 96 Hall Street in Concord, New Hampshire and is currently an undeveloped residential lot. The parcel was previously a residential property with a signal family home located on the parcel. The home has been removed and the foundation has been filled in. The driveway entrance for the home remains on Hall Street however the current conditions of the property are undeveloped.

The parcel is bordered to the south by Metro Treatment Center of New Hampshire, to the west by a scrap metal recycling facility, to north by a residential property, and to the east (across Hall Street) by the Best Western Hotel.

The proposed improvements include construction of a new commercial parking lot that will serve the existing Metro Treatment Center of New Hampshire located on the adjacent parcel to the south at 100 Hall Street. The existing curb cut on the subject parcel will be removed and a new driveway connection will be added that connects the new parking lot to the existing parking lot at 100 Hall Street. Related site improvements include landscape, site lighting and stormwater management. The parking expansion will provide relief to the existing parking demands for the Metro Treatment Clinic of New Hampshire. This work will require a conditional use permit to disturb the wetland buffer, located on site, for construction of the stormwater management system.

Because the drainage improvements will involve disturbance of 6,536 sqft of land within the associated 50-foot wetland buffer, the project will require the following Conditional Use Permit:

Section 28-4-3(d) Conditional Use Permit Required for Certain Disturbances of Wetland Buffers

This Conditional Use Permit application is being submitted concurrently with a Site Plan application for the proposed development. Refer to the Site Plan application which contains a more thorough Project Narrative, including photographs of the subject area of the site.

II. Standards of Review for Condition Use Permit – Z.O. Article 28-9-4(b)(4)

In submitting the attached application for a Conditional Use Permit, the applicant recognizes the need to successfully demonstrate, to the satisfaction of the City of Concord Planning Board, that each of following standards have been or will be fulfilled upon completion of the subject work. Specifically:

a. The use is specifically authorized in this ordinance as a conditional use;

Impacts to wetland buffers are authorized by conditional use permit under Article 28-4-3(d) of the Zoning Ordinance.

b. If completed as proposed by the applicant, the development in its proposed location will comply with all requirements of this Article, and with the specific conditions or standards established in this ordinance for the particular use;

The proposed development will be in compliance with all aspects of this Article. There are no other specific conditions or standards established in the ordinance for the particular use. The proposed stormwater basins will comply with all aspects of the Zoning Ordinance and the Subdivision Regulations.

c. The use will not materially endanger the public health or safety;

There is no reason to believe that the health or safety of the general public will be adversely affected by the proposed disturbance to the wetland buffer.

d. The use will be compatible with the neighborhood and with adjoining or abutting uses in the area in which it is to be located;

The proposed use, as it relates to the CUP, will have no impact on the neighborhood or adjoining uses in the area.

e. The use will not have an adverse effect on highway or pedestrian safety;

The proposed use, as it relates to the CUP, will have no impact on highway or pedestrian safety in the area.

f. The use will not have an adverse effect on the natural, environmental, and historic resources of the City;

The proposed use, as it relates to the CUP, involves the construction of stormwater management basins within the wetland buffer. No other uses are proposed within the buffer. There should not be any adverse impact to the natural or environmental resources of the city. The proposed use should not have any impacts at all on the historic resources of the city.

g. The use will be adequately serviced by necessary public utilities and by community facilities and services of a sufficient capacity to ensure the proper operation of the proposed use, and will not necessitate excessive public expenditures to provide facilities and services with sufficient additional capacity.

The proposed conditional use will not require any public utilities, facilities or services.

III. Standards of Review for Condition Use Permit - Z.O. Article 28-4-3(d)

In addition to the requirements of Article 28-9-4(b)(4) discussed above, the applicant recognizes the need to successfully demonstrate, to the satisfaction of the City of Concord Planning Board, that each

EXHIBIT "A"

Page 3 of 3

of following additional standards have been or will be fulfilled upon completion of the subject work. Specifically:

1. The disturbance of the buffer is necessary to the establishment of an allowable principal or accessory use on the buildable land area of the lot;

The proposed disturbance to the wetland buffer is needed to construct stormwater management infrastructure.

2. The proposed disturbance to the buffer cannot practicably be located otherwise on the lot to eliminate or reduce the impact to the buffer and represents the minimum extent of disturbance necessary to achieve the reasonable use of those portions of the lot consisting of buildable land;

There is no other practicable location for the stormwater management system.

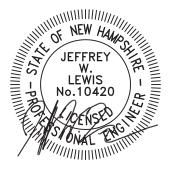
3. The proposed disturbance to the buffer minimizes the environmental impact to the abutting wetland, and to downstream property and hydrologically connected water and wetland resources;

A full hydrologic and hydraulic analysis has been prepared and is included within the Stormwater Management Report that was submitted as part of the associated Site Plan application. The onsite stormwater management system has been designed to mitigate the effects of the proposed improvements in accordance with the Regulations such that there will not be any adverse effects to downstream properties or wetlands.

4. Where applicable, wetland permits have been received or are obtained from the NHDES and USACOE;

No NHDES nor USACOE permits are required for completion of this project.

5. Where applicable, permits for proof of compliance with all other state and/or federal regulations have been received or are obtained.


There are no other state or federal regulations that apply to the proposed use, as it relates to the CUP.

STORMWATER MANAGEMENT REPORT

Prepared For

METRO TREATMENT OF NEW HAMPSHIRE, LP TAX MAP 793Z LOT 23 96 HALL STREET CONCORD, NEW HAMPSHIRE

April 20, 2022

Prepared for:

Metro Treatment Center of New Hampshire 100 Hall Street Concord, NH, 03301-3591

Prepared By:

119 Storrs Street, Suite 201 Concord, NH 03301 Tel 603-226-1166 Fax 603-226-1160 www.northpointeng.com

Civil Engineering 🖌 Land Planning 🖌 Construction Services

Project No. 21102

TABLE OF CONTENTS

I. Project Narrative

- Project Description
- Methodology
- Existing Conditions
- Post-Developed Conditions
- Summary of Results & Tables
- II. USGS Map Exhibit
- III. Web Soil Survey Map & Data
- IV. Aerial Photograph Exhibits
- V. Rip-Rap Calculations

VI. Drainage Analysis

- Extreme Precipitation Tables
- HydroCAD Output Data Pre-Developed
- HydroCAD Output Data Post-Developed
- BMP Worksheet Treatment Swale

VII. Drainage Area Plans

- Pre-Developed Drainage Area Plan
- Post-Developed Drainage Area Plan

Project Description

The subject parcel of land is located at 96 Hall Street in Concord, New Hampshire and is currently an undeveloped residential lot. The parcel was previously a residential property with a single family home located on the parcel. The home has been removed and the foundation has been filled in. The driveway entrance for the home remains on Hall Street however the current conditions of the property are undeveloped.

The parcel is bordered to the south by Metro Treatment Center of New Hampshire, to the west by a scrap metal recycling facility, to north by a residential property, and to the east (across Hall Street) by the Best Western Hotel.

The proposed improvements include construction of a new commercial parking lot that will serve the existing Metro Treatment Center of New Hampshire located on the adjacent parcel to the south at 100 Hall Street. The existing curb cut on the subject parcel will be removed and a new driveway connection will be added that connects the new parking lot to the existing parking lot at 100 Hall Street. Related site improvements include landscape, site lighting and stormwater management. The parking expansion will provide relief to the existing parking demands for the Metro Treatment Clinic of New Hampshire. This work will require a conditional use permit to disturb the wetland buffer, located on site, for construction of the stormwater management system.

Methodology

In accordance with the provisions and requirements of the City of Concord Site Plan Regulations the 2, 10, 25 and 100-year, (24-hour) return frequency storms were used in all aspects of analysis and design for stormwater management improvements at the subject site, as further documented in this report.

The methodology of the U.S.D.A–S.C.S publication <u>Urban Hydrology for Small Watersheds – Technical</u> <u>Release No. 55</u> (TR-55) and Computer Program – Project Formulation Hydrology (TR-20) was selected for use in the design of segments of the drainage system in order to estimate peak stormwater discharge volumes. In implementing the methodology of TR-55 and TR-20 a HYDROCAD (Version 10.00) stormwater modeling, hydrograph generating, and routing computer program was utilized.

Estimates for Time of Concentration, used in the analysis were made using the methodology contained within U.S.D.A–S.C.S publication <u>Urban Hydrology for Small Watersheds – Technical Release No. 55</u> (TR-55). In implementing the TR-55 Method, a minimum Time of Concentration of 2 minutes was utilized for urbanized areas.

All design and analysis calculations performed using the referenced methodologies are attached to this report. These calculations document the subcatchment area, breakdown of surface type, time of concentration, rainfall intensity, peak discharge volume, peak velocity, and other descriptive design data for each watershed and pipe segment evaluated. In addition, the attached "Drainage Areas Plans" graphically define and illustrate the real extent of each watershed or subcatchment area investigated.

Existing Drainage Conditions

The existing subject parcel is approximately 37,000 square feet and is comprised mostly of trees and shrubs on a relatively flat parcel. This parcel drains to both Hall Street to the east and a wetland complex to the west. There are no exiting drainage pathways or constructed stormwater management devices currently located on the site.

Post-Development Drainage Conditions

Overview:

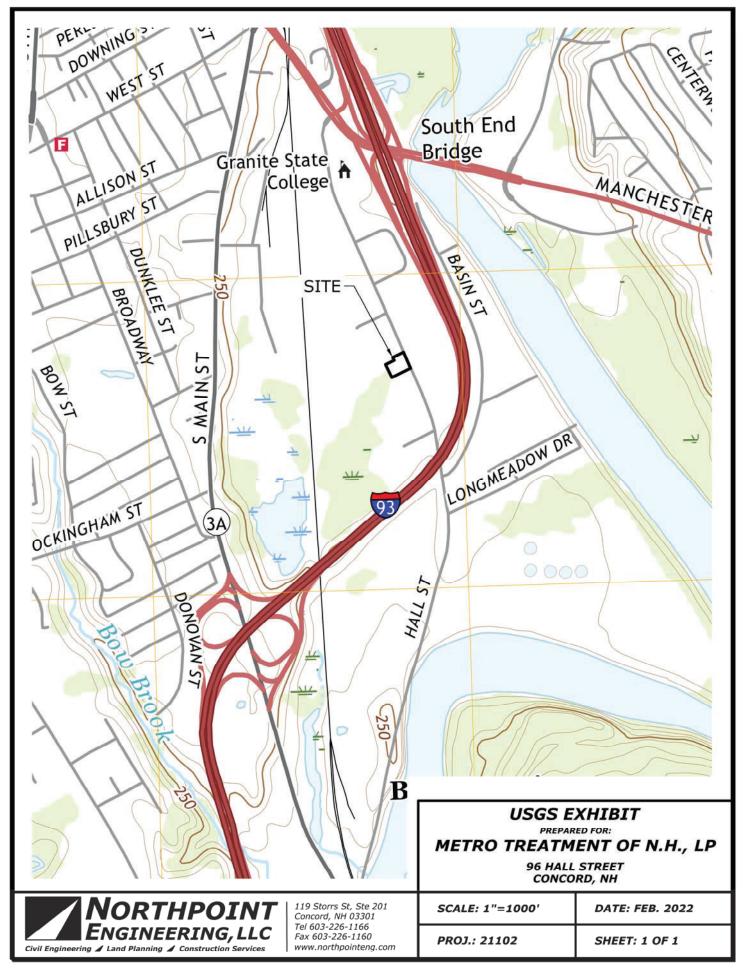
The proposed parking lot expansion will create 17,396 square feet of new impervious surface. The stormwater runoff from the new impervious surface will be attenuated by a detention basin, treated by a stormwater treatment swale, then flow into an infiltration basin.

Stormwater Treatment & Groundwater Recharge:

A treatment swale downstream of the detention basin will provide the stormwater treatment for the collected stormwater runoff from the new parking lot. This treatment swale then flows into an infiltration basin to. The infiltration basin allows treated stormwater to seep into the groundwater to ensure the new development does not increase the total volume of stormwater leaving the site during the predicted 10-year storm event.

Peak Runoff Control:

The site has been designed to provide peak runoff control requirements in accordance with the City of Concord Site Plan Regulations. The new onsite stormwater management basin has been designed to control the peak discharge rates of runoff leaving the detention basin to ensure that post construction flow rates are equal to pre-construction flow rates. The site has been designed such that the 2-year, 10-year, 25-year and 100-year 24-hour post-developed peak flow rates do not exceed the flow rates of the existing conditions. See Table 1 in the Summary of Results below for actual values and Table 2 for Runoff volume control Summary.

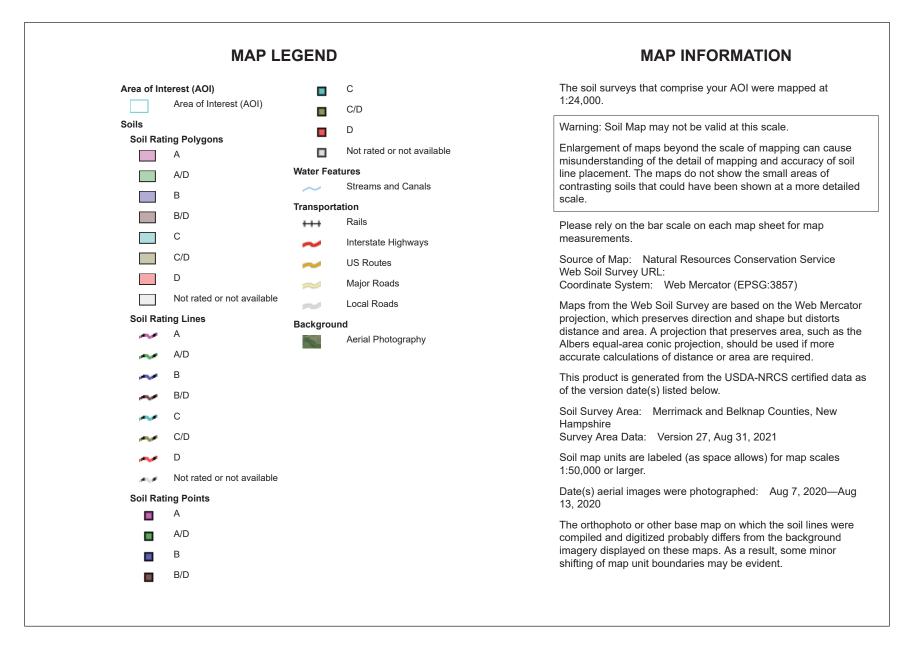

		Tab	le 1. Peak F	Runoff Con	trol Summa	ary					
	Peak Rates of Runoff at Study Points										
	(2-Year, 24-Hour) (10-Year, 24-Hour) (25-Year, 24-Hour) (100-Year, 24-Hour)										
Node	Pre	Post	Pre	Post	Pre	Post	Pre	Post			
20R (POC1)	0.07-cfs	0.01-cfs	0.40-cfs	0.09-cfs	1.05-cfs	0.41-cfs	1.49-cfs	1.09-cfs			
10R (POC2)	0.04-cfs	0.01-cfs	0.11-cfs	0.58-cfs	0.22-cfs						

Summary of Results

Table 2. Runoff Volume Control Summary

		Runoff Volum	e at Study Points				
		(10-Year, 24-Hour)					
Study Point	Node	Pre	Post				
POC 1	25R	2,000-CF	526-CF				
POC 2	10R	787-CF	284-CF				

II. USGS MAP EXHIBIT



III. Web Soil Survey Map

Natural Resources **Conservation Service**

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
296A	Freetown mucky peat, 0 to 2 percent slopes	B/D	1.5	46.4%
498A	Urban land-Pootatuck complex, 0 to 3 percent slopes		1.8	53.6%
Totals for Area of Intere	est	1	3.3	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

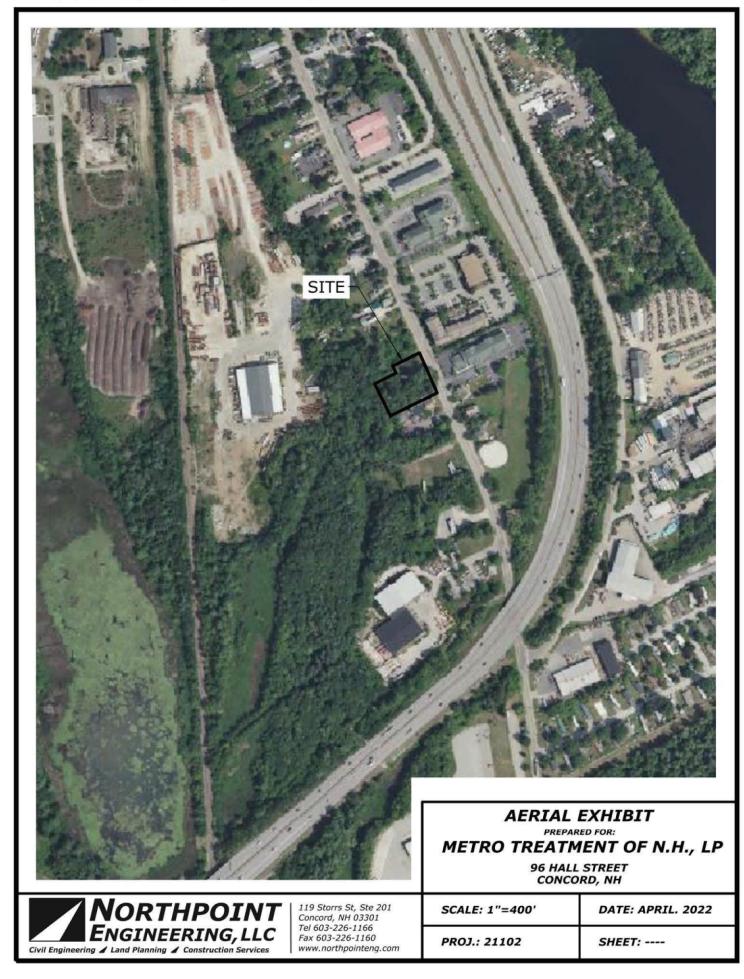
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


USDA

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

IV. Aerial Photograph Exhibits

V. Rip-Rap Calculations

RIP RAP OUTLET PROTECTION APRON CALCULATIONS

Northpoi The purp	eatment Center of New Hampshire , C nt Project # 21102 ose of this spreadsheet is to calculate t equired to help prevent soil loss for the	he dimens	ions of		4/20/2022	2														
Required	input to the spreadsheet is																			
-	Q	peak flow	in CFS																	
	Do	diameter i	n feet of o	utlet or wi	dth of channe	el														
	Tw	tail water	at end of a	pron (min	imum of 0.5'))														
	ng on the tail water conditions either co One where Tw<1/2Do	olumn 1 or Column C																		
Length o	f Apron																			
-	$La = (1.8Q/Do^{3}/2) + 7Do$			La = 3*Q	/Do^3/2+7Do)														
	Apron at outfall W1=3*Do W2 = 3Do + La d channel use channel width for W1 ar	A W2		W1=3*Do W2=3Do-	-															
Rock Rip		lu wz																		
ROCK RIP	$d50 = (0.02*Q^4/3)/(Tw*Do)$			Same									RIRAP	GRAD	ATION	FNVF	I OPF			
	uso (0.02 Q + 5)/(1 w D0)			Same							d1	00	d		d		d	5	1	
Input to (Chart				Calculated C	Dutput				USE	FROM	TO	FROM		FROM	-	FROM	-	depth	USE depth
	on (Optional)	Q (cfs)	Do (ft)	Tw (ft)	La	W1	W2	d50, ft	d50 in	d50 in.	in	in	in	in	in	in	in	in	in	in.
OS#1	15" Outlet from SWMB #1	0.34	1.25	0.50	9	4	13	0.0	0.09	6	9	12	8	11	6	9	2	3	15	15

VI. Drainage Analysis

- Extreme Precipitation Tables
- HydroCAD Output Data Pre-Developed
 - o Drainage Diagram
 - Area Listing and Soil Listing
 - o Node List: 2-year, 10-year, 25-year, 100-year
 - Full Summary: 10-year
- HydroCAD Output Data Post-Developed
 - o Drainage Diagram
 - Area Listing and Soil Listing
 - Node List: 2-year, 10-year, 25-year, 100-year
 - Full Summary: 10-year
- BMP Worksheet Treatment Swale

Extreme Precipitation Tables

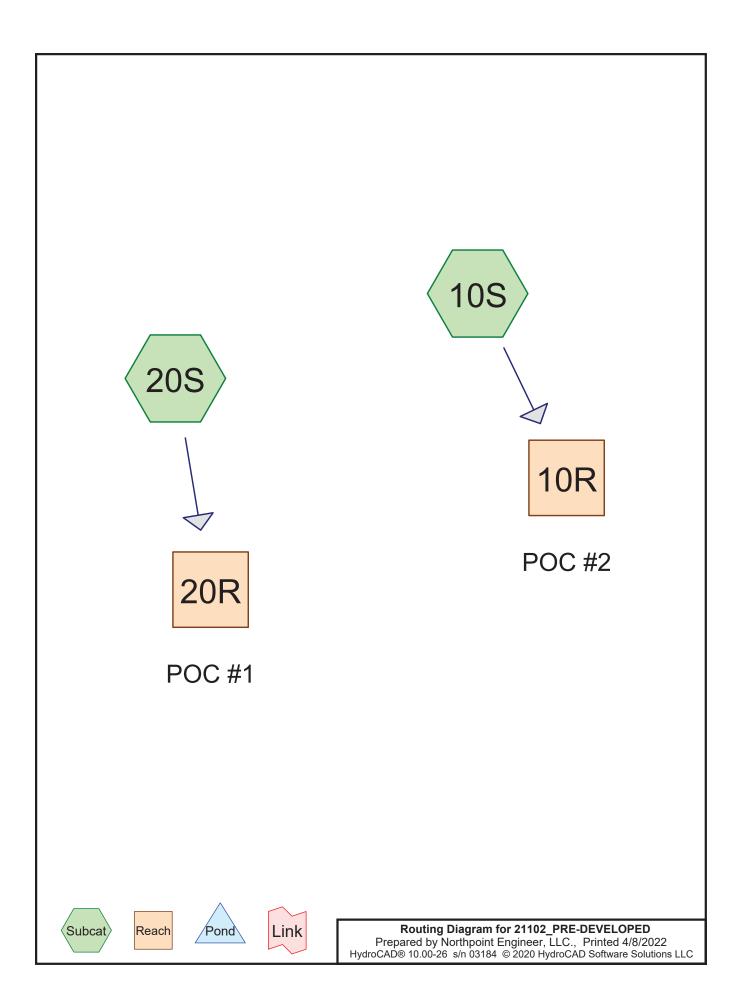
Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	71.525 degrees West
Latitude	43.187 degrees North
Elevation	0 feet
Date/Time	Tue, 08 Feb 2022 15:49:35 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.39	0.49	0.64	0.80	1.00	1yr	0.69	0.98	1.16	1.47	1.86	2.37	2.57	1yr	2.09	2.47	2.89	3.59	4.12	1yr
2yr	0.31	0.48	0.60	0.79	1.00	1.25	2yr	0.86	1.15	1.45	1.81	2.26	2.82	3.15	2yr	2.50	3.03	3.51	4.19	4.79	2yr
5yr	0.37	0.58	0.73	0.97	1.25	1.58	5yr	1.08	1.44	1.83	2.29	2.84	3.51	4.00	5yr	3.11	3.84	4.44	5.21	5.91	5yr
10yr	0.42	0.66	0.84	1.14	1.48	1.89	10yr	1.28	1.71	2.19	2.73	3.38	4.15	4.79	10yr	3.68	4.60	5.30	6.15	6.92	10yr
25yr	0.50	0.79	1.01	1.39	1.85	2.38	25yr	1.60	2.14	2.77	3.45	4.25	5.19	6.08	25yr	4.59	5.85	6.72	7.66	8.55	25yr
50yr	0.57	0.91	1.17	1.64	2.20	2.84	50yr	1.89	2.54	3.31	4.12	5.06	6.14	7.30	50yr	5.44	7.02	8.04	9.04	10.03	50yr
100yr	0.65	1.04	1.35	1.91	2.60	3.39	100yr	2.25	3.02	3.96	4.93	6.03	7.28	8.75	100yr	6.44	8.42	9.61	10.68	11.77	100yr
200yr	0.74	1.21	1.57	2.24	3.09	4.05	200yr	2.67	3.59	4.73	5.88	7.17	8.62	10.51	200yr	7.63	10.10	11.51	12.62	13.82	200yr
500yr	0.89	1.47	1.91	2.77	3.88	5.11	500yr	3.35	4.51	5.98	7.42	9.02	10.80	13.38	500yr	9.56	12.87	14.60	15.75	17.09	500yr


Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.20	0.32	0.39	0.52	0.64	0.87	1yr	0.55	0.85	1.05	1.36	1.59	2.04	2.42	1yr	1.80	2.33	2.66	3.29	3.84	1yr
2yr	0.30	0.47	0.57	0.78	0.96	1.15	2yr	0.83	1.12	1.31	1.72	2.19	2.74	3.05	2yr	2.43	2.93	3.41	4.07	4.66	2yr
5yr	0.34	0.53	0.66	0.90	1.15	1.37	5yr	0.99	1.34	1.54	2.00	2.56	3.28	3.70	5yr	2.90	3.56	4.12	4.87	5.55	5yr
10yr	0.38	0.58	0.72	1.01	1.30	1.55	10yr	1.13	1.51	1.75	2.25	2.87	3.75	4.29	10yr	3.32	4.13	4.74	5.56	6.34	10yr
25yr	0.44	0.66	0.82	1.18	1.55	1.81	25yr	1.34	1.77	2.06	2.61	3.33	4.47	5.20	25yr	3.96	5.00	5.68	6.64	7.56	25yr
50yr	0.48	0.73	0.91	1.31	1.76	2.03	50yr	1.52	1.99	2.35	2.94	3.74	5.11	6.02	50yr	4.52	5.79	6.49	7.59	8.57	50yr
100yr	0.54	0.81	1.02	1.47	2.01	2.30	100yr	1.74	2.25	2.67	3.30	4.21	5.85	6.96	100yr	5.17	6.70	7.45	8.68	9.77	100yr
200yr	0.59	0.89	1.13	1.64	2.29	2.57	200yr	1.97	2.52	3.03	3.72	4.74	6.68	8.05	200yr	5.92	7.74	8.51	9.95	11.14	200yr
500yr	0.69	1.02	1.32	1.91	2.72	3.01	500yr	2.35	2.94	3.61	4.36	5.55	7.97	9.74	500yr	7.05	9.37	10.09	11.93	13.29	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.29	0.45	0.55	0.73	0.90	1.08	1yr	0.78	1.06	1.19	1.59	1.99	2.50	2.75	1yr	2.21	2.65	3.15	3.83	4.35	1yr
2yr	0.33	0.50	0.62	0.84	1.04	1.24	2yr	0.90	1.22	1.39	1.83	2.32	2.91	3.26	2yr	2.57	3.13	3.64	4.33	4.94	2yr
5yr	0.41	0.63	0.78	1.07	1.36	1.57	5yr	1.17	1.54	1.78	2.28	2.90	3.75	4.31	5yr	3.32	4.14	4.77	5.55	6.28	5yr
10yr	0.49	0.75	0.93	1.30	1.68	1.91	10yr	1.45	1.87	2.15	2.70	3.44	4.58	5.33	10yr	4.05	5.13	5.90	6.71	7.58	10yr
25yr	0.62	0.95	1.18	1.69	2.22	2.48	25yr	1.91	2.42	2.76	3.39	4.30	5.93	7.08	25yr	5.25	6.81	7.80	8.63	9.69	25yr
50yr	0.74	1.13	1.41	2.03	2.73	3.02	50yr	2.36	2.95	3.31	4.03	5.10	7.24	8.77	50yr	6.41	8.44	9.65	10.46	11.78	50yr
100yr	0.90	1.36	1.71	2.47	3.38	3.68	100yr	2.92	3.60	4.00	4.79	6.05	8.84	10.90	100yr	7.83	10.48	11.96	12.66	14.22	100yr
200yr	1.08	1.63	2.07	2.99	4.18	4.49	200yr	3.60	4.39	4.82	5.69	7.19	10.79	13.53	200yr	9.55	13.01	14.84	15.35	17.15	200yr
500yr	1.40	2.08	2.68	3.89	5.53	5.86	500yr	4.77	5.73	6.19	7.16	9.03	14.07	18.03	500yr	12.45	17.34	19.78	19.80	22.01	500yr

21102_PRE-DEVELOPED

Prepared by Northpoint Engineer, LLC. HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
18,819	61	Pasture/grassland/range, Good, HSG B (10S, 20S)
1,028	80	Pasture/grassland/range, Good, HSG D (20S)
1,810	98	Paved parking, HSG B (10S, 20S)
14,743	55	Woods, Good, HSG B (10S, 20S)
462	77	Woods, Good, HSG D (20S)
36,862	61	TOTAL AREA

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
35,372	HSG B	10S, 20S
0	HSG C	
1,490	HSG D	20S
0	Other	
36,862		TOTAL AREA

21102_PRE-DEVE Prepared by Northpo HydroCAD® 10.00-26 s		Type III 24-hr 36.00 hrs 2 year Rainfall=2.0 Printed 4/8/20 ftware Solutions LLC Page	022
Reach ro	Runoff by SCS TR-20 meth	rs, dt=0.01 hrs, 3601 points hod, UH=SCS, Weighted-CN - Pond routing by Dyn-Stor-Ind method	
Subcatchment10S:		off Area=9,553 sf 7.00% Impervious Runoff Depth>0. e=0.2470 '/' Tc=2.9 min CN=63 Runoff=0.04 cfs 28	
Subcatchment20S:		ff Area=27,309 sf 4.18% Impervious Runoff Depth>0. _ength=140' Tc=4.3 min CN=61 Runoff=0.07 cfs 67	
Reach 10R: POC #2		Inflow=0.04 cfs 28 Outflow=0.04 cfs 28	• • •
Reach 20R: POC #1		Inflow=0.07 cfs 67 Outflow=0.07 cfs 67	• • • •
Total		noff Volume = 956 cf Average Runoff Depth = Pervious = 35,052 sf 4.91% Impervious = 1,8	

21102_PRE-DEVE Prepared by Northpo			s 10 year Rainfall=4.13" Printed 4/8/2022
HYUIOCAD® 10.00-20 S	11 03 184 @ 2020 HydroCAD Solid	ware Solutions LLC	Page 5
Reach ro	Time span=0.00-36.00 hrs Runoff by SCS TR-20 metho uting by Dyn-Stor-Ind method	od, UH=SCS, Weighted-Cl	
Subcatchment10S:			ervious Runoff Depth>0.99" =63 Runoff=0.17 cfs 787 cf
Subcatchment20S:		•	ervious Runoff Depth>0.88" 31 Runoff=0.40 cfs 2,000 cf
Reach 10R: POC #2			Inflow=0.17 cfs 787 cf Outflow=0.17 cfs 787 cf
Reach 20R: POC #1			Inflow=0.40 cfs 2,000 cf Outflow=0.40 cfs 2,000 cf
Total R	unoff Area = 36,862 sf Runo 95.09% I		erage Runoff Depth = 0.91" 91% Impervious = 1,810 sf

21102_PRE-DEVELOPED Prepared by Northpoint Engineer, LLC. HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Software Solution				
Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach restling his Dire Step lad method.				
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method				
Subcatchment10S:		a=9,553 sf 7.00% Impervious Runoff Depth=1.60") '/' Tc=2.9 min CN=63 Runoff=0.43 cfs 1,277 cf		
Subcatchment20S:		=27,309 sf 4.18% Impervious Runoff Depth=1.46" 40' Tc=4.3 min CN=61 Runoff=1.05 cfs 3,323 cf		
Reach 10R: POC #2		Inflow=0.43 cfs 1,277 cf Outflow=0.43 cfs 1,277 cf		
Reach 20R: POC #1		Inflow=1.05 cfs 3,323 cf Outflow=1.05 cfs 3,323 cf		
Total Runoff Area = 36,862 sf Runoff Volume = 4,600 cf Average Runoff Depth = 1.50" 95.09% Pervious = 35,052 sf 4.91% Impervious = 1,810 sf				

21102_PRE-DEVE Prepared by Northpo HydroCAD® 10.00-26 s		Type III 24-hr 36.00 hrs50 year Rainfall=6.09"Printed 4/8/2022oftware Solutions LLCPage 7		
Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method , Pond routing by Dyn-Stor-Ind method				
Subcatchment10S:		noff Area=9,553 sf 7.00% Impervious Runoff Depth>2.24" =0.2470 '/' Tc=2.9 min CN=63 Runoff=0.43 cfs 1,782 cf		
Subcatchment20S:		off Area=27,309 sf 4.18% Impervious Runoff Depth>2.06" ength=140' Tc=4.3 min CN=61 Runoff=1.09 cfs 4,698 cf		
Reach 10R: POC #2		Inflow=0.43 cfs 1,782 cf Outflow=0.43 cfs 1,782 cf		
Reach 20R: POC #1		Inflow=1.09 cfs 4,698 cf Outflow=1.09 cfs 4,698 cf		
Total Runoff Area = 36,862 sf Runoff Volume = 6,480 cf Average Runoff Depth = 2.11" 95.09% Pervious = 35,052 sf 4.91% Impervious = 1,810 sf				

21102_PRE-DEVE Prepared by Northpo	pint Engineer, LLC.		.00 hrs 100 year Rainfall=7.10" Printed 4/8/2022			
HydroCAD® 10.00-26 s	s/n 03184 © 2020 HydroCAD So	ftware Solutions LLC	Page 8			
Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method						
Subcatchment10S:			00% Impervious Runoff Depth>2.97" n CN=63 Runoff=0.58 cfs 2,368 cf			
Subcatchment20S:			8% Impervious Runoff Depth>2.77" n CN=61 Runoff=1.49 cfs 6,310 cf			
Reach 10R: POC #2			Inflow=0.58 cfs 2,368 cf Outflow=0.58 cfs 2,368 cf			
Reach 20R: POC #1			Inflow=1.49 cfs 6,310 cf Outflow=1.49 cfs 6,310 cf			
Total R			cf Average Runoff Depth = 2.82" sf 4.91% Impervious = 1,810 sf			

Prepared by Northpoint Engineer, LLC.

Summary for Subcatchment 10S:

0.17 cfs @ 18.06 hrs, Volume= 787 cf, Depth> 0.99" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 36.00 hrs 10 year Rainfall=4.13"

	A	rea (sf)	CN	Description			
		1,150	55	Woods, Go	od, HSG B		
		669	98	Paved park	ing, HSG B		
_		7,734	61	Pasture/gra	ssland/rang	ge, Good, HSG B	
		9,553	63 Weighted Average				
		8,884		93.00% Per	vious Area		
		669		7.00% Impe	ervious Area	а	
	Тс	Length	Slope	,	Capacity	Description	
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	2.9	81	0.2470	0.46		Sheet Flow,	
						Range n= 0.130	P2= 2.75"

Summary for Subcatchment 20S:

0.40 cfs @ 18.09 hrs, Volume= 2,000 cf, Depth> 0.88" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 36.00 hrs 10 year Rainfall=4.13"

A	rea (sf)	CN E	escription		
	462	77 V	Voods, Go	od, HSG D	
	1,028	80 F	asture/gra	ssland/rang	ge, Good, HSG D
	13,593	55 V	Voods, Ğo	od, HSG B	-
	1,141	98 F	aved park	ing, HSG B	
	11,085	61 F	asture/gra	ssland/rang	ge, Good, HSG B
	27,309	61 V	Veighted A	verage	
	26,168	g	5.82% Per	vious Area	
	1,141	4	.18% Impe	ervious Area	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.7	100	0.0300	0.45		Sheet Flow,
					Fallow n= 0.050 P2= 2.75"
0.6	40	0.0250	1.11		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
4.3	140	Total			

Summary for Reach 10R: POC #2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		9,553 sf,	7.00% Impervious,	Inflow Depth > 0.99"	for 10 year event
Inflow	=	0.17 cfs @ 1	18.06 hrs, Volume=	787 cf	
Outflow	=	0.17 cfs @ 1	18.06 hrs, Volume=	787 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Reach 20R: POC #1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	27,309 sf,	4.18% Impervious,	Inflow Depth > 0.88	" for 10 year event
Inflow	=	0.40 cfs @ 1	18.09 hrs, Volume=	2,000 cf	
Outflow	=	0.40 cfs @ 1	18.09 hrs, Volume=	2,000 cf, At	ten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Subcatchment 10S:

Runoff = 0.43 cfs @ 12.05 hrs, Volume= 1,277 cf, Depth= 1.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.15"

_	A	rea (sf)	CN	Description				
		1,150	55	Woods, Go	od, HSG B			
		669	98	Paved park	ing, HSG B			
_		7,734	61	Pasture/gra	ssland/rang	ge, Good, HSG B		
		9,553	63	63 Weighted Average				
		8,884		93.00% Per	vious Area			
		669		7.00% Impe	ervious Area	а		
	Тс	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)			
	2.9	81	0.2470	0.46		Sheet Flow,		
						Range n= 0.130	P2= 2.75"	

Summary for Subcatchment 20S:

Runoff = 1.05 cfs @ 12.07 hrs, Volume= 3,3

lume= 3,323 cf, Depth= 1.46"

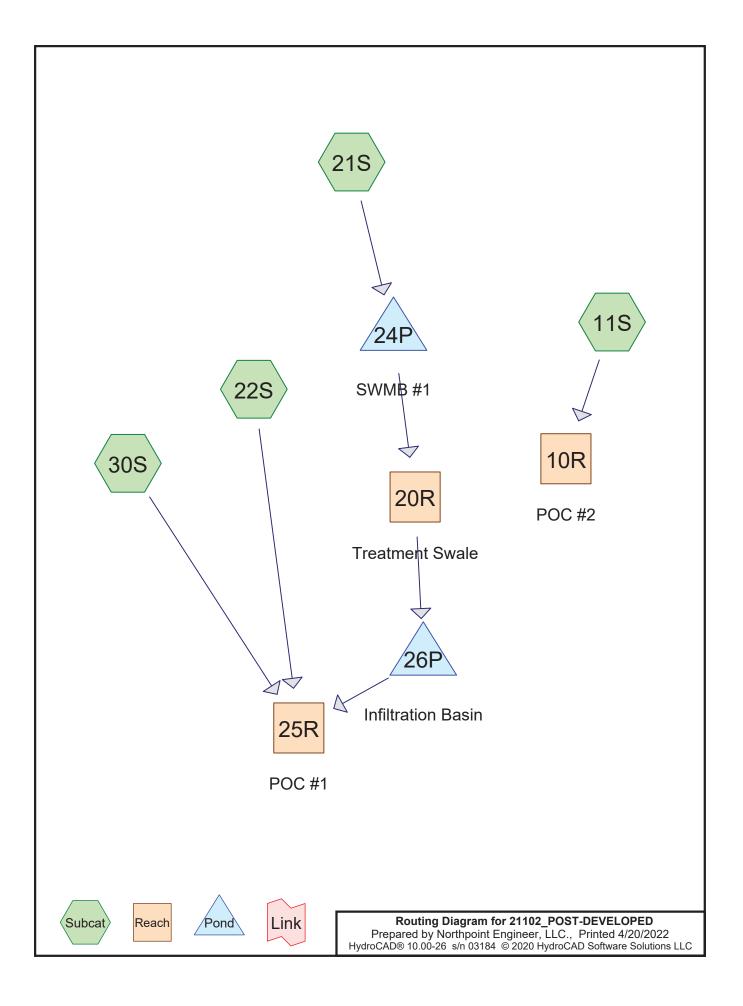
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.15"

A	rea (sf)	CN E	Description		
	462	77 V	Voods, Go	od, HSG D	
	1,028	80 F	asture/gra	ssland/rang	ge, Good, HSG D
	13,593	55 V	Voods, Ğo	od, HSG B	
	1,141	98 F	aved park	ing, HSG B	
	11,085	61 F	Pasture/gra	ssland/rang	ge, Good, HSG B
	27,309	61 V	Veighted A	verage	
	26,168	g	5.82% Per	vious Area	
	1,141	4	.18% Impe	ervious Area	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.7	100	0.0300	0.45		Sheet Flow,
					Fallow n= 0.050 P2= 2.75"
0.6	40	0.0250	1.11		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
4.3	140	Total			

Summary for Reach 10R: POC #2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	9,553 sf,	7.00% Impervious,	Inflow Depth = 1.60"	for 25 year event
Inflow	=	0.43 cfs @ 1	12.05 hrs, Volume=	1,277 cf	-
Outflow	=	0.43 cfs @ 1	12.05 hrs, Volume=	1,277 cf, Atte	n= 0%, Lag= 0.0 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Reach 20R: POC #1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	27,309 sf,	4.18% Impervious,	Inflow Depth = 1.46"	for 25 year event
Inflow	=	1.05 cfs @ 1	12.07 hrs, Volume=	3,323 cf	
Outflow	=	1.05 cfs @ 1	12.07 hrs, Volume=	3,323 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

21102_POST-DEVELOPED

Prepared by Northpoint Engineer, LLC. HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
11,012	61	>75% Grass cover, Good, HSG B (11S, 21S, 22S)
1,065	48	Brush, Good, HSG B (30S)
1,028	73	Brush, Good, HSG D (30S)
19,262	98	Paved parking, HSG B (21S)
4,033	55	Woods, Good, HSG B (30S)
462	77	Woods, Good, HSG D (30S)
36,862	80	TOTAL AREA

21102_POST-DEVELOPED

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
35,372	HSG B	11S, 21S, 22S, 30S
0	HSG C	
1,490	HSG D	30S
0	Other	
36,862		TOTAL AREA

21102_POST-DEVELOPED	Type III 24-hr 36.00 hrs	2 year Rain	nfall=2.81"
Prepared by Northpoint Engineer, LLC.		Printed	4/20/2022
HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Softwa	re Solutions LLC		Page 4

Subcatchment11S:	Runoff Area=3,879 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=81' Slope=0.2470 '/' Tc=2.9 min CN=61 Runoff=0.01 cfs 96 cf
Subcatchment21S:	Runoff Area=25,482 sf 75.59% Impervious Runoff Depth>1.73" Tc=2.0 min CN=89 Runoff=0.93 cfs 3,671 cf
Subcatchment22S:	Runoff Area=913 sf 0.00% Impervious Runoff Depth>0.30" Tc=2.0 min CN=61 Runoff=0.00 cfs 23 cf
Subcatchment 30S:	Runoff Area=6,588 sf 0.00% Impervious Runoff Depth>0.22" Tc=2.0 min CN=58 Runoff=0.01 cfs 118 cf
Reach 10R: POC #2	Inflow=0.01 cfs 96 cf Outflow=0.01 cfs 96 cf
Reach 20R: Treatment Swale	Avg. Flow Depth=0.14' Max Vel=0.17 fps Inflow=0.05 cfs 3,078 cf n=0.150 L=100.0' S=0.0050 '/' Capacity=2.49 cfs Outflow=0.05 cfs 3,057 cf
Reach 25R: POC #1	Inflow=0.01 cfs 141 cf Outflow=0.01 cfs 141 cf
Pond 24P: SWMB #1	Peak Elev=229.91' Storage=1,954 cf Inflow=0.93 cfs 3,671 cf Outflow=0.05 cfs 3,078 cf
Pond 26P: Infiltration Basin	Peak Elev=227.50' Storage=0 cf Inflow=0.05 cfs 3,057 cf Discarded=0.05 cfs 3,056 cf Primary=0.00 cfs 0 cf Outflow=0.05 cfs 3,056 cf
Total Pupoff A	$r_{22} = 36.862$ sf Runoff Volume = 3.907 cf Average Runoff Depth = 1.27

Total Runoff Area = 36,862 sf Runoff Volume = 3,907 cf Average Runoff Depth = 1.27" 47.75% Pervious = 17,600 sf 52.25% Impervious = 19,262 sf

21102_POST-DEVELOPED	Type III 24-hr 36.00 hrs	10 year Rainfall=4.13"
Prepared by Northpoint Engineer, LLC.		Printed 4/20/2022
HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Softw	vare Solutions LLC	Page 5

Subcatchment11S:	Runoff Area=3,879 sf 0.00% Impervious Runoff Depth>0.88" Flow Length=81' Slope=0.2470 '/' Tc=2.9 min CN=61 Runoff=0.06 cfs 284 cf
Subcatchment21S:	Runoff Area=25,482 sf 75.59% Impervious Runoff Depth>2.94" Tc=2.0 min CN=89 Runoff=1.57 cfs 6,253 cf
Subcatchment22S:	Runoff Area=913 sf 0.00% Impervious Runoff Depth>0.88" Tc=2.0 min CN=61 Runoff=0.01 cfs 67 cf
Subcatchment30S:	Runoff Area=6,588 sf 0.00% Impervious Runoff Depth>0.72" Tc=2.0 min CN=58 Runoff=0.08 cfs 398 cf
Reach 10R: POC #2	Inflow=0.06 cfs 284 cf Outflow=0.06 cfs 284 cf
Reach 20R: Treatment Swale	Avg. Flow Depth=0.37' Max Vel=0.29 fps Inflow=0.34 cfs 5,334 cf n=0.150 L=100.0' S=0.0050 '/' Capacity=2.49 cfs Outflow=0.34 cfs 5,309 cf
Reach 25R: POC #1	Inflow=0.09 cfs 526 cf Outflow=0.09 cfs 526 cf
Pond 24P: SWMB #1	Peak Elev=230.24' Storage=2,791 cf Inflow=1.57 cfs 6,253 cf Outflow=0.34 cfs 5,334 cf
Pond 26P: Infiltration Basin	Peak Elev=228.51' Storage=1,115 cf Inflow=0.34 cfs 5,309 cf Discarded=0.10 cfs 5,247 cf Primary=0.02 cfs 61 cf Outflow=0.12 cfs 5,309 cf

Total Runoff Area = 36,862 sf Runoff Volume = 7,002 cf Average Runoff Depth = 2.28" 47.75% Pervious = 17,600 sf 52.25% Impervious = 19,262 sf

21102_POST-DEVELOPED	Type III 24-hr 36.00 hrs	25 year Rainfall=5.15"
Prepared by Northpoint Engineer, LLC.		Printed 4/20/2022
HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Softw	are Solutions LLC	Page 6

Subcatchment11S:	Runoff Area=3,879 sf 0.00% Impervious Runoff Depth>1.46" Flow Length=81' Slope=0.2470 '/' Tc=2.9 min CN=61 Runoff=0.11 cfs 472 cf
Subcatchment21S:	Runoff Area=25,482 sf 75.59% Impervious Runoff Depth>3.91" Tc=2.0 min CN=89 Runoff=2.05 cfs 8,313 cf
Subcatchment22S:	Runoff Area=913 sf 0.00% Impervious Runoff Depth>1.46" Tc=2.0 min CN=61 Runoff=0.03 cfs 111 cf
Subcatchment 30S:	Runoff Area=6,588 sf 0.00% Impervious Runoff Depth>1.25" Tc=2.0 min CN=58 Runoff=0.15 cfs 687 cf
Reach 10R: POC #2	Inflow=0.11 cfs 472 cf Outflow=0.11 cfs 472 cf
Reach 20R: Treatment Swale	Avg. Flow Depth=0.50' Max Vel=0.34 fps Inflow=0.59 cfs 7,206 cf n=0.150 L=100.0' S=0.0050 '/' Capacity=2.49 cfs Outflow=0.59 cfs 7,179 cf
Reach 25R: POC #1	Inflow=0.41 cfs 2,207 cf Outflow=0.41 cfs 2,207 cf
Pond 24P: SWMB #1	Peak Elev=230.45' Storage=3,375 cf Inflow=2.05 cfs 8,313 cf Outflow=0.59 cfs 7,206 cf
Pond 26P: Infiltration Basin	Peak Elev=228.59' Storage=1,218 cf Inflow=0.59 cfs 7,179 cf iscarded=0.10 cfs 5,764 cf Primary=0.38 cfs 1,409 cf Outflow=0.48 cfs 7,173 cf
T (1 D) (1	

Total Runoff Area = 36,862 sf Runoff Volume = 9,583 cf Average Runoff Depth = 3.12" 47.75% Pervious = 17,600 sf 52.25% Impervious = 19,262 sf

21102_POST-DEVELOPED	Type III 24-hr 36.00 hrs	100 year Rainfall=7.10"
Prepared by Northpoint Engineer, LLC.		Printed 4/20/2022
HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Soft	tware Solutions LLC	Page 7

Subcatchment11S:	Runoff Area=3,879 sf 0.00% Impervious Runoff Depth>2.77" Flow Length=81' Slope=0.2470 '/' Tc=2.9 min CN=61 Runoff=0.22 cfs 896 cf
Subcatchment21S:	Runoff Area=25,482 sf 75.59% Impervious Runoff Depth>5.80" Tc=2.0 min CN=89 Runoff=2.98 cfs 12,326 cf
Subcatchment22S:	Runoff Area=913 sf 0.00% Impervious Runoff Depth>2.77" Tc=2.0 min CN=61 Runoff=0.05 cfs 211 cf
Subcatchment30S:	Runoff Area=6,588 sf 0.00% Impervious Runoff Depth>2.48" Tc=2.0 min CN=58 Runoff=0.33 cfs 1,360 cf
Reach 10R: POC #2	Inflow=0.22 cfs 896 cf Outflow=0.22 cfs 896 cf
Reach 20R: Treatment Swale	Avg. Flow Depth=0.74' Max Vel=0.42 fps Inflow=1.50 cfs 10,914 cf n=0.150 L=100.0' S=0.0050 '/' Capacity=2.49 cfs Outflow=1.33 cfs 10,884 cf
Reach 25R: POC #1	Inflow=1.09 cfs 5,933 cf Outflow=1.09 cfs 5,933 cf
Pond 24P: SWMB #1	Peak Elev=230.80' Storage=4,404 cf Inflow=2.98 cfs 12,326 cf Outflow=1.50 cfs 10,914 cf
Pond 26P: Infiltration Basin Dis	Peak Elev=228.66' Storage=1,324 cf Inflow=1.33 cfs 10,884 cf carded=0.10 cfs 6,391 cf Primary=0.95 cfs 4,363 cf Outflow=1.05 cfs 10,754 cf

Total Runoff Area = 36,862 sf Runoff Volume = 14,793 cf Average Runoff Depth = 4.82" 47.75% Pervious = 17,600 sf 52.25% Impervious = 19,262 sf Prepared by Northpoint Engineer, LLC.

Summary for Subcatchment 11S:

0.06 cfs @ 18.06 hrs, Volume= Runoff 284 cf, Depth> 0.88" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 36.00 hrs 10 year Rainfall=4.13"

A	rea (sf)	CN	Description					
	3,879	61	>75% Grass cover, Good, HSG B					
	3,879 100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
2.9	81	0.2470	0.46		Sheet Flow, Range n= 0.130	P2= 2.75"		

Summary for Subcatchment 21S:

1.57 cfs @ 18.03 hrs, Volume= Runoff 6,253 cf, Depth> 2.94" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 36.00 hrs 10 year Rainfall=4.13"

Area (sf)	CN	Description				
6,220	61	>75% Gras	s cover, Go	bod, HSG B		
19,262	98	Paved park	ing, HSG B	3		
25,482	89	Weighted A	verage			
6,220		24.41% Pervious Area				
19,262		75.59% Impervious Area				
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description		
2.0				Direct Entry,		

Summary for Subcatchment 22S:

0.01 cfs @ 18.04 hrs, Volume= Runoff 67 cf, Depth> 0.88" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 36.00 hrs 10 year Rainfall=4.13"

A	rea (sf)	CN E	Description					
	913	61 >	>75% Grass cover, Good, HSG B					
	913	1	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
2.0					Direct Entry,			

Summary for Subcatchment 30S:

Runoff = 0.08 cfs @ 18.05 hrs, Volume= 398 cf, Depth> 0.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 36.00 hrs 10 year Rainfall=4.13"

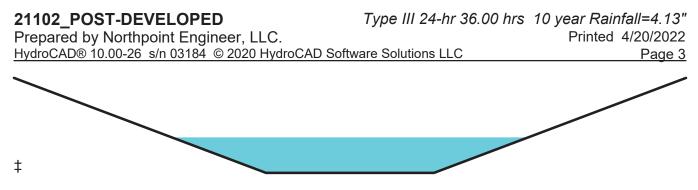
A	rea (sf)	CN	Description				
	462	77	Woods, Go	od, HSG D			
	1,028	73	Brush, Goo	d, HSG D			
	4,033	55	Woods, Go	od, HSG B			
	1,065	48	Brush, Goo	d, HSG B			
	6,588	58	Weighted A	verage			
	6,588		100.00% Pervious Area				
-				0			
Tc	Length	Slop		Capacity	Description		
<u>(min)</u>	(feet)	(ft/f	i) (ft/sec)	(cfs)			
2.0					Direct Entry,		

Summary for Reach 10R: POC #2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	3,879 sf,	0.00% Impervious,	Inflow Depth > 0.88	for 10 year event
Inflow	=	0.06 cfs @ 1	18.06 hrs, Volume=	284 cf	
Outflow	=	0.06 cfs @ 1	18.06 hrs, Volume=	284 cf, At	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs


Summary for Reach 20R: Treatment Swale

Inflow Area	a =	25,482 sf, 75.59% Impervious, Inflow Depth >	2.51"	for 10 year event
Inflow	=	0.34 cfs @ 18.58 hrs, Volume= 5,334	cf	-
Outflow	=	0.34 cfs @ 18.65 hrs, Volume= 5,309	cf, Atter	n= 1%, Lag= 4.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Max. Velocity= 0.29 fps, Min. Travel Time= 5.7 min Avg. Velocity = 0.14 fps, Avg. Travel Time= 11.6 min

Peak Storage= 117 cf @ 18.65 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.00' Flow Area= 5.0 sf, Capacity= 2.49 cfs

2.00' x 1.00' deep channel, n= 0.150 Side Slope Z-value= 3.0 '/' Top Width= 8.00' Length= 100.0' Slope= 0.0050 '/' Inlet Invert= 228.50', Outlet Invert= 228.00'

Summary for Reach 25R: POC #1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	32,983 sf,	58.40% Impervious,	Inflow Depth > 0.19	" for 10 year event
Inflow	=	0.09 cfs @	18.05 hrs, Volume=	526 cf	-
Outflow	=	0.09 cfs @	18.05 hrs, Volume=	526 cf, At	ten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Pond 24P: SWMB #1

Inflow Area	a =	25,482 sf, 75.59% Impervious, Inflow Depth > 2.94" for 10 year even	nt
Inflow	=	1.57 cfs @ 18.03 hrs, Volume= 6,253 cf	
Outflow	=	0.34 cfs @ 18.58 hrs, Volume= 5,334 cf, Atten= 78%, Lag= 33	.0 min
Primary	=	0.34 cfs @ 18.58 hrs, Volume= 5,334 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 230.24' @ 18.58 hrs Surf.Area= 2,654 sf Storage= 2,791 cf

Plug-Flow detention time= 307.8 min calculated for 5,334 cf (85% of inflow) Center-of-Mass det. time= 213.2 min (1,408.4 - 1,195.2)

Volume	Inver	t Avail.Sto	rage	Storage D	escription	
#1	229.00	5,02	13 cf	Custom S	Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio (fee 229.0 230.0 231.0	20 20 20	Surf.Area (sq-ft) 1,867 2,492 3,174	(cubic	Store <u>-feet)</u> 0 2,180 2,833	Cum.Store (cubic-feet) 0 2,180 5,013	
Device	Routing	Invert	Outle	et Devices		
#1	Primary	229.00'		' Round C		
#2 #3 #4	Device 1 Device 1 Device 1	229.00' 229.90' 230.75'	Inlet / n= 0. 1.5" \ 6.0" \ 48.0"	/ Outlet Inv 012 Corru Vert. Orific Vert. Orific ' x 48.0" H	vert= 229.00' / . ligated PP, smo ce/Grate C= ce/Grate C=	0.600 Grate C= 0.600

Primary OutFlow Max=0.34 cfs @ 18.58 hrs HW=230.24' TW=228.87' (Dynamic Tailwater) **1=Culvert** (Passes 0.34 cfs of 4.41 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.06 cfs @ 5.22 fps)

-3=Orifice/Grate (Orifice Controls 0.28 cfs @ 1.98 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 26P: Infiltration Basin

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=65) [62] Hint: Exceeded Reach 20R OUTLET depth by 0.32' @ 21.66 hrs

Inflow Area =	25,482 sf, 75.59% Impervious,	Inflow Depth > 2.50" for 10 year event
Inflow =	0.34 cfs @ 18.65 hrs, Volume=	5,309 cf
Outflow =	0.12 cfs @ 20.54 hrs, Volume=	5,309 cf, Atten= 64%, Lag= 112.9 min
Discarded =	0.10 cfs @ 20.54 hrs, Volume=	5,247 cf
Primary =	0.02 cfs @ 20.54 hrs, Volume=	61 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 228.51' @ 20.54 hrs Surf.Area= 1,412 sf Storage= 1,115 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 108.0 min (1,521.8 - 1,413.9)

Volume	Invert	Avail.Sto	rage Sto	rage Desc	ription	
#1	227.50'	1,87	77 cf Cu	stom Stag	e Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee 227.9 228.0 228.9 229.0	et) 50 00 50	urf.Area (sq-ft) 800 1,090 1,403 1,720	Inc.Sto (cubic-fee 4 ⁻ 67 78	et) (c 0 73 23	um.Store ubic-feet) 0 473 1,096 1,877	
Device	Routing	Invert	Outlet D	evices		
#1 #2	Discarded Primary	227.50' 228.50'	6.0' long Head (fe 2.50 3.0 Coef. (E	x 2.0' bro et) 0.20 0 0 3.50	eadth Broa .40 0.60 4 2.61 2.0	Surface area ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Discarded OutFlow Max=0.10 cfs @ 20.54 hrs HW=228.51' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=0.02 cfs @ 20.54 hrs HW=228.51' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 0.02 cfs @ 0.29 fps)

TREATMENT SWALE DESIGN CRITERIA (Env-Wq 1508.08) Treatment Swales with Flow Attenuated (Downstream of Detention) (Env-Wq 1508.08)

ode Name:	20R Enter the node name in the drainage analysis (e.g., reach TS 5), if applicable.	
Yes Yes/No No Yes/No	Have you reviewed the restrictions on unlined swales outlined in Env-Wq 150 Is the system lined? (Required if not treated or if above SHWT.)	08.08(a)?
100.00 feet	Is the system lined? (Required if not treated or if above SHWT.) L = Swale length ¹	<u>> 100'</u>
7.00 feet	$w = Bottom of the swale width^2$	<u>-</u> 100 0 - 8 feet ²
227.30 feet	E _{SHWT} = Elevation of SHWT. If none found, use the lowest elev. of test pit	
227.40 feet	E _{BTM} = Elevation of the bottom of the practice	<u>></u> Е _{SHWT}
3.0 :1	SS _{RIGHT} = Right side slope	<u>></u> 3:1
3.0 :1	SS _{LEFT} = Left side slope	<u>></u> 3:1
0.005 ft/ft	S = Slope of swale in decimal form ³	0.00505
	d = Flow depth in swale at 2-year flow, using Mannings n = 0.15 (Attach	
2.5 inches	summary node report which shows modeled Mannings n.) ⁴	<u><</u> 4"
	HRT = Hydraulic residence time during the WQF. In some programs, this	
12 min	is shown on node outlet hydrograph as "minimum travel time". (Attach) ⁵	<u>></u> 10 min
228.10 ft	Peak elevation of the 10-year storm event ⁶	
228.90 ft	Elevation of the top of the swale	
YES Yes/No	10 peak elevation < the top of swale	← yes

2. Widths up to 16' allowed if a dividing berm or structure is used such that neither width is more than 8'.

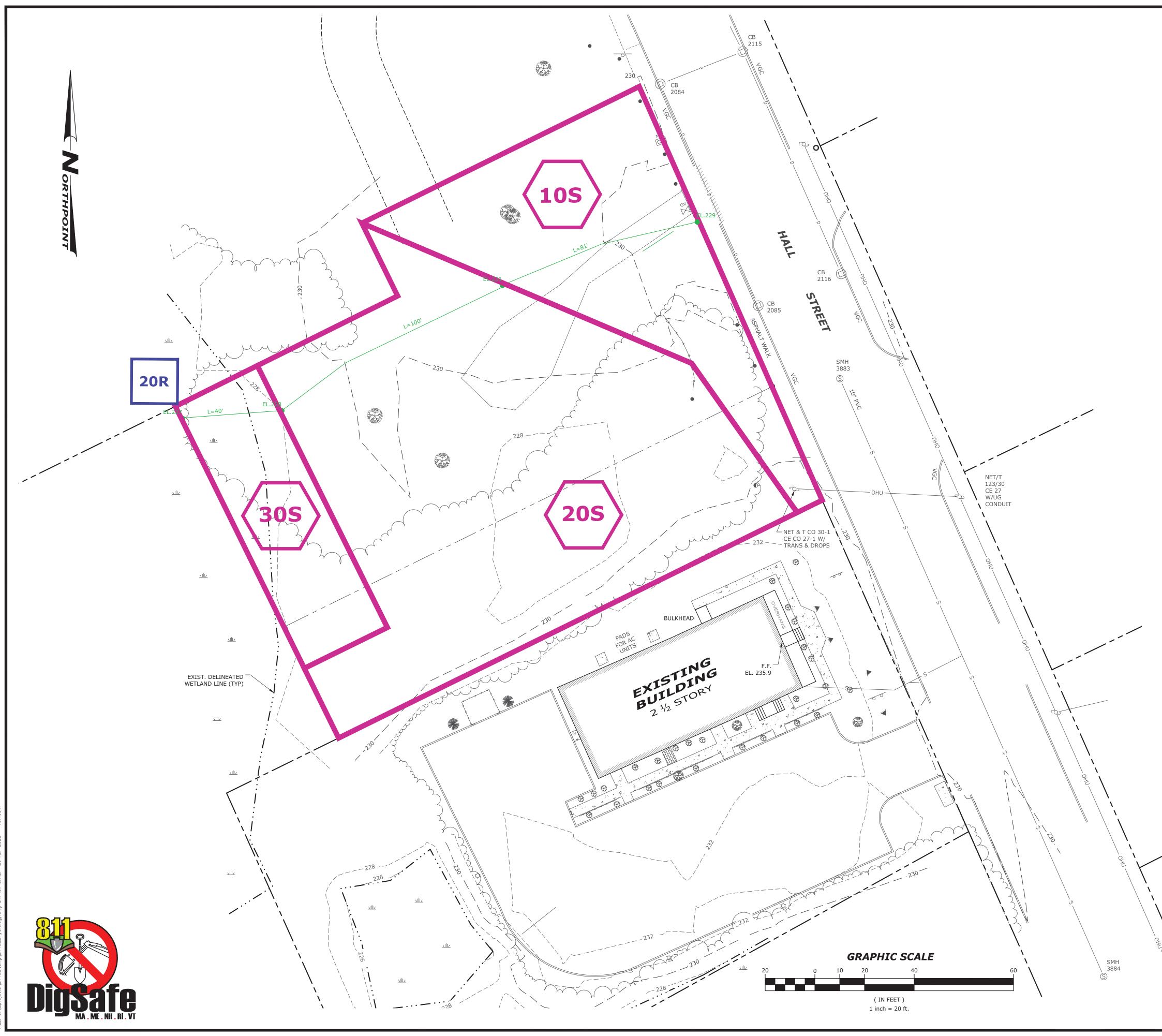
3. If > 0.02 (2%) then check dams are required. No additional detention time is credited for check dams.

4. If not using software which displays this data input, provide a screenshot of input screen.

5. If not using software which displays this output, calculate in Designer's Notes, below:

HRT (min) = Length of swale (ft) / (velocity at 2 yr peak depth (ft/sec) * 60)

6. If the swale does not discharge the 50-year storm without overtopping the banks, hydrologic routing of secondary discharge to a different node may be necessary.


Designer's Notes:

NHDES Alteration of Terrain

Last Revised: December 2017

VII. Drainage Area Plans

- Pre-Developed Drainage Area Plan
- Post-Developed Drainage Area Plan

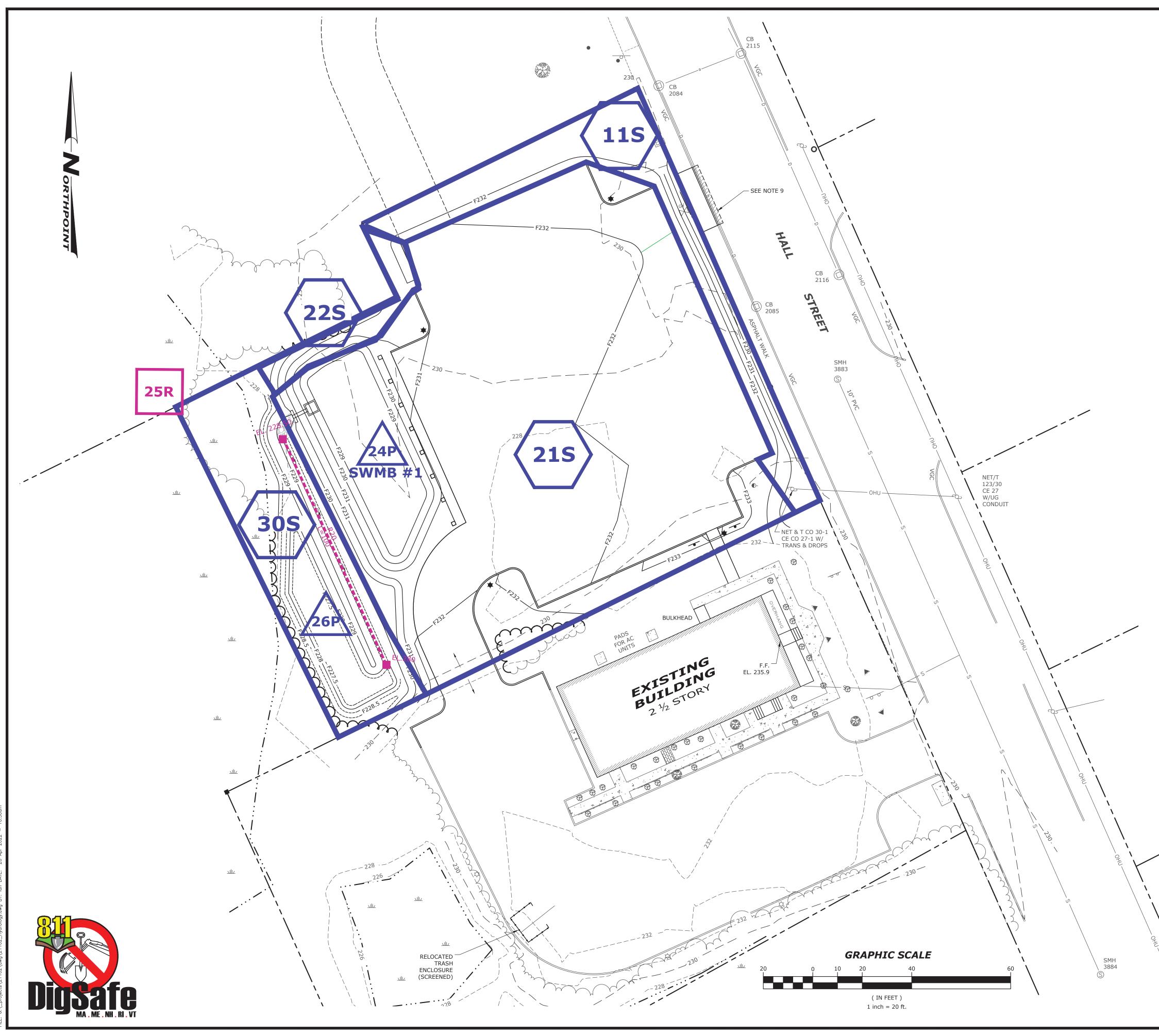
G:\ projects\21102\dwa\21102 Hvdrologv.dwg BY: jan DATE: 20 Apr 2022 - 10:46am

PRE-DRAINAGE LEGEND:

THIS LEGEND REFLECTS THE HYDROCAD MODEL USED FOR DRAINAGE CALCULATIONS.

(15) MODELED AS EXISTING SUBCATCHMENT

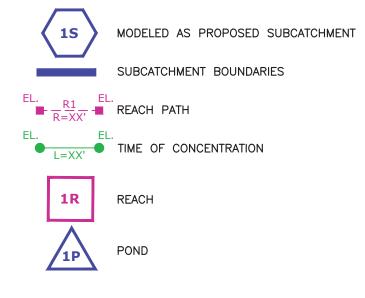
SUBCATCHMENT BOUNDARIES


EL. $R = \frac{R_1}{R = XX'}$ EL. REACH PATH

1R REACH

/1P\

POND


PRE-DEVELOPMENT DRAINAGE AREA PLAN PREPARED FOR: METRO TREATMENT OF NEW HAMPSHIRE, LP					
	96 HALL CONCO	RD, NH	1		
APPLICANT: METRO TREATMENT OF NEW HAMPSHIRE, LP 100 HALL STREET CONCORD, NH 03301 CONCORD, NH 03301 CONC					
	REVISIONS: NO. DATE DESCRIPTIONS	IPTION			
	THPOIN NEERING, L	LC Te Fa	9 Storrs St, Ste 201 ncord, NH 03301 I 603-226-1166 x 603-226-1160 vw.northpointeng.com	DATE: APRIL 202 PROJ.: 21102 SCALE: 1"=20' SHEET: 1 OF 1	

: G.\ nroiects\21102\dwn\21102 Hydrolony dwn BY: inn DATE: 20 Anr 2022 - 10:50nm

POST-DRAINAGE LEGEND:

THIS LEGEND REFLECTS THE HYDROCAD MODEL USED FOR DRAINAGE CALCULATIONS.

POST-DEVELOPMENT DRAINAGE AREA PLAN PREPARED FOR: METRO TREATMENT OF NEW HAMPSHIRE, LP						
	96 HALL CONCO	<u> </u>				
100 HALL STREET	APPLICANT: METRO TREATMENT OF NEW HAMPSHIRE, LP 100 HALL STREET CONCORD, NH 03301 CONCORD, NH 03301 CONC					
	REVISIONS: <u>NO. DATE DESCRI</u> 	<u>PTION</u>				
	THPOIN EERING, LI	LC Te Fa	9 Storrs St, Ste 201 ncord, NH 03301 I 603-226-1166 x 603-226-1160 vw.northpointeng.com	DATE: APRIL 2022 PROJ.: 21102 SCALE: 1"=20' SHEET: 1 OF 1		