PROJECT NARRATIVE

Prepared For

THE WOODS AT EAST VILLAGE SHAKER ROAD MAP 411Z LOT 49 CONCORD, NEW HAMPSHIRE

January 19, 2022

Prepared for:

MERC Properties, LLC 189 North Main Street, Suite 101 Concord, NH 03301

Prepared By:

119 Storrs Street, Suite 201 Concord, NH 03301 Tel 603-226-1166 Fax 603-226-1160 www.northpointeng.com

Project No. 21045

TABLE OF CONTENTS

I. Project Narrative

- Property Description
- Proposed Project Description

II. Aerial Photograph Exhibit

III. Site Photograph Exhibits

IV. Selected Subdivision Improvement Plan Sheets (8 ½ x 11)

- Overview Plan
- Condominium Site Plan (2 sheets)
- Site Layout Plan

V. Architectural Elevations

VI. Major Subdivision Checklist

Property Description

The subject parcel of land is located on the east side of Shaker Road approximately 1,000-feet north of Pekoe Drive in Concord, New Hampshire. The subject parcel is approximately 15.88 acres in size with approximately 378-feet of frontage on Shaker Road. The parcel is currently undeveloped and is predominantly wooded. It is situated entirely within the RM (Medium Density Residential) Zoning District. It is bounded by existing residential properties in the RM District to the north and east. And to the south and west (across Shaker Road) it is bounded by existing residential properties in the adjacent RS (Single Family Residential) Zoning District.

The parcel contains a large wetland complex, with a seasonal stream, located directly adjacent to Shaker Road. The small stream crosses under Shaker Road in an undersized 12-inch culvert near the northwest corner of the property. The middle area of the subject parcel is comprised of a large upland area, which is the subject area of the proposed development. However, in order to access this buildable area of the parcel, the front wetland needs to be crossed.

Project Description

The proposed project involves the construction of a private roadway extending from Shaker Road approximately 1,150-feet into the parcel and terminating in a cul-de-sac. This private road will provide access to a new 20-unit cluster development comprised of both single-family and duplex units which will be developed as a residential condominium. The project will be serviced by municipal water and sewer which exist in Shaker Road just to the south of the parcel and will be extended within Shaker Road along the parcel's frontage. The development will also be serviced with natural gas which exists in Shaker Road. All other private utilities will be installed underground within the private roadway corridor and will connect to existing infrastructure in Shaker Road.

The proposed private roadway will be constructed with a 26-foot wide paved surface. The first 250-feet of the road will extend across the existing wetland complex in order to access the buildable area of the parcel. This first section of road will not have any curb in order to limit the impact to the adjacent wetland. The remaining 900-feet of the road will have sloped granite curb on both sides and a closed drainage system with roadway catch basins. All stormwater runoff from the closed drainage system will be treated onsite in a series of stormwater management basins.

The proposed residential condominium units will all have two car garages with 18-foot wide private driveways off the private roadway. Each unit will also have a limited common area in the back yard for a small patio or deck. All other land will be common to the condominium development. A small guest parking area and mail station will be installed central to the development.

This proposed wetland impacts total 9,990-sf and will require a Dredge & Fill Wetlands Permit from NHDES. An additional 24,300-sf of upland wetland buffer will also be impacted which necessitate approval of a Conditional Use Permit from the Planning Board. The project will also require an Alteration of Terrain (AoT) Permit from NHDES as it will disturb approximately 280,000-sf of terrain.

II. Aerial Photograph Exhibit

III. Site Photograph Exhibits

-

Picture 1: Existing catch basin at south corner of property

Picture 2: Headwall adjacent to catch basin in picture 1

SITE PHOTOGRAPHS PREPARED FOR: The Woods at East Village Shaker Road Concord, NH

PAGE **1** of **5**

DATE: July 15, 2021

Picture 3: Roadside swale along middle of property line, border of large wetland area

Picture 4: View of culvert outlet on opposite side of Shaker Rd., looking towards site

119 Storrs Street, Suite 201 Concord, NH 03301 Tel 603-226-1166 Fax 603-226-1160 www.northpointeng.com SITE PHOTOGRAPHS PREPARED FOR: The Woods at East Village Shaker Road Concord, NH

PAGE 2 of 5

DATE: July 15, 2021

Picture 5: Existing culvert inlet near north corner of property

Picture 6: View of wetland area draining towards catch basin, looking towards Shaker Rd.

SITE PHOTOGRAPHS PREPARED FOR: The Woods at East Village Shaker Road Concord, NH

PAGE 3 of 5

DATE: July 15, 2021

Picture 7: View of wetland area draining west to culvert, looking north

Picture 8: Large upland area adjacent to Shaker Rd., looking towards road

SITE PHOTOGRAPHS PREPARED FOR: The Woods at East Village Shaker Road Concord, NH

PAGE **4** of **5**

DATE: July 15, 2021

Picture 9: Upland area in Picture 8, looking towards back of site to the east

Picture 10: Neighboring property south of site and catch basin, in relation to property corner stake shown on the left

V. Architectural Elevations

=

Ben Bradley Classic Duplex 990.224

Grade used for Construction

Drawings this version

January 19, 2022

City of Concord Planning Board c/o City of Concord Planning Dept 41 Green Street Concord, NH 03301

Subject: Waiver Requests Letter The Woods at East Village – Subdivision Application Map 411Z Lot 49 (Shaker Road) Concord, New Hampshire NPE Proj. No. 21045

Dear Board Members,

On behalf of the Applicant and property owners the referenced Subdivision application, I am formally requesting that the Planning Board grant the following waiver from the City of Concord Subdivision Regulations:

- Section 20.24 Length of Dead End Streets;
- Section 21.11 Cul-de-sacs;

The waivers requested are specific to the length of the proposed private roadway which is designed as a permanent dead end terminating in a cul-de-sac. The noted sections both state that permanent dead end streets shall not exceed 1,000-feet in length. The proposed private roadway measures 1,150-feet in length.

The proposed private roadway will be constructed to all other applicable City standards, including a pavement width of 26-feet with a cul-de-sac diameter of 100-feet. The development will be serviced by municipal water and will include fire hydrants along the length of the roadway, including at its cul-de-sac terminus. The project will be fully compliant with all NFPA requirements for fire safety.

Jeffrey W. Lewis, PE Principal Engineer Northpoint Engineering, LLC

January 19, 2022

Heather R. Shank, PLA, AICP, City Planner City of Concord Planning Dept 41 Green Street Concord, NH 03301

Subject: Traffic Letter The Woods at East Village Map 411Z Lot 49 (Shaker Road) Concord, New Hampshire NPE Proj. No. 21045

Dear Ms. Shank,

Please accept this brief letter as our formal documentation of the expected traffic volumes that will be generated by the proposed residential cluster subdivision. The proposed subdivision involves the creation of 20 residential condominium units, 12 of which are single-family detached units and 8 of which are attached duplex units. All proposed units will be accessed via a new private roadway connection to Shaker Road. Shaker Road is a rural collector street that carries local and regional traffic through the northeast quadrant of the City.

According to the ITE Trip Generation Handbook, 9th Edition, for Land Use Code 210 (Singlefamily Detached Housing) the average rate of vehicle trip ends per dwelling unit on a weekday is 9.52; the average rate during the AM peak hour is 0.77; and, the average rate during the PM peak hour is 1.02. Based on a proposed 20 unit development this correlates to the following average trip ends expected from this development:

Weekday Total

Entering (50%):	95
Exiting (50%):	95
Total:	190

Weekday AM Peak Hour (of Generator)

Entering (26%):	4
Exiting (74%):	11
Total:	15

Heather R. Shank 1/19/2022 *Page 2 of 2*

> Weekday PM Peak Hour (of Generator)

Entering (64%):	13
Exiting (36%):	7
Total:	20

Jeffrey W. Lewis, PE Principal Engineer Northpoint Engineering, LLC

February 28, 2022

City of Concord Planning Board c/o City of Concord Planning Dept 41 Green Street Concord, NH 03301

Subject: Waiver Requests Letter The Woods at East Village – Subdivision Application Map 411Z Lot 49 (Shaker Road) NPE Proj. No. 21045

Dear Board Members,

On behalf of the Applicant and property owner the referenced Subdivision application, I am formally requesting that the Planning Board grant the following waivers from the City of Concord Subdivision Regulations:

- Section 20.24 Length of Dead End Streets;
- Section 21.11 Cul-de-sacs;
- Section 21.06 Sidewalks;
- Section 22.02 Sidewalks Required;

The first two waivers requested are specific to the proposed private roadway which is designed as a permanent dead end terminating in a cul-de-sac. The noted sections both state that permanent dead end streets shall not exceed 1,000-feet in length, whereas 1,150-feet is proposed. In addition, the required right-of-way diameter on the cul-de-sac is 120-feet whereas 110-feet is proposed. The proposed private roadway will be constructed to all other applicable City standards, including a pavement width of 26-feet with a cul-de-sac pavement diameter of 100feet. The development will be serviced by municipal water and will include fire hydrants along the length of the roadway, including at its cul-de-sac terminus. The project will be fully compliant with all NFPA requirements for fire safety.

The second two waiver requests are specific to the requirement for sidewalks, both along existing Shaker Road and along the proposed private roadway. Shaker Road does not have any sidewalk on either side of the road. Installation of sidewalk along the project's frontage would not be practical and would serve no point. In addition, the proposed 26-foot pavement width of the private roadway serving only 20 homes with no thru traffic does not warrant a sidewalk.

Jeffrey W. Lewis, PE Principal Engineer Northpoint Engineering, LLC

February 28, 2022

Beth Fenstermacher, Assistant City Planner City of Concord Planning Dept 41 Green Street Concord, NH 03301

Subject: Drainage Report Addendum The Woods at East Village Map 411Z Lot 49 (Shaker Road) Concord, New Hampshire NPE Proj. No. 21045

Dear Ms, Fenstermacher,

In order to address the City Engineering Review comments received in the Memorandum from Gary Lemay dated 2/8/22, we have revised certain aspects of the stormwater management design plans and calculations. The original drainage analysis was contained within the NHDES Alteration of Terrain Permit application that was submitted as part of the Subdivision Application. Included with this cover letter are the revised sections of the original report, which include the Project Narrative and the Drainage Analysis.

The design has been modified to accommodate the requirements of Subdivision Regulation Section 23.08(3) relative to the 100-year storm peak flow and the 10-year storm volume. In order to meet the 100-year peak flow requirements some minor adjustments were made to the outlet control structures at SWMB#1 and SWMB#3. In order to meet the 10-year volume requirement, a stone berm level spreader was added downstream on SWMB#1 which has a small infiltration volume capacity.

Jeffrey W. Lewis, PE Principal Engineer Northpoint Engineering, LLC

II. PROJECT NARRATIVE (Rev 2/28/22)

- Project Description
- MethodologyPre-Developed Conditions
- Post-Developed Conditions
- Summary of Results

Project Description

This project is a proposed 20-unit residential cluster subdivision in the east side of Concord. The subject parcel is Tax Map 411 Z Lot 49 located on Shaker Road. The subject parcel is 16 acres in size and is located on the east side of Shaker Road.

The proposed development includes a new private cul-de-sac accessed off Shaker Road. All residential units and parking will be along this new drive. This project will also include onsite stormwater management and disturb approximately 280,000-sf of terrain.

The majority of onsite stormwater runoff, including all roadway runoff, generated from the proposed site improvements will be collected in an onsite stormdrain system and conveyed to three onsite stormwater management basins that will provide treatment prior to discharge, as further discussed in the sections to follow.

Methodology

In accordance with the provisions and requirements of the NHDES Alteration of Terrain Program, the 2-, 10-, and 50-year, (24-hour) return frequency storms were used in all aspects of analysis and design for stormwater management improvements at the subject site.

The methodology of the U.S.D.A–S.C.S publication <u>Urban Hydrology for Small Watersheds –</u> <u>Technical Release No. 55</u> (TR-55) and Computer Program – Project Formulation Hydrology (TR-20) was selected for use in the design of segments of the drainage system in order to estimate peak stormwater discharge volumes. In implementing the methodology of TR-55 and TR-20 a HYDROCAD (Version 10.00) stormwater modeling, hydrograph generating, and routing computer program was utilized.

Estimates for Time of Concentration, used in the analysis were made using the methodology contained within U.S.D.A–S.C.S publication <u>Urban Hydrology for Small Watersheds – Technical</u> <u>Release No. 55</u> (TR-55). In implementing the TR-55 Method, a minimum Time of Concentration of 2 minutes was utilized for urbanized areas.

All design and analysis calculations performed using the referenced methodologies are attached to this report. These calculations document the subcatchment area, breakdown of surface type, time of concentration, rainfall intensity, peak discharge volume, peak velocity, and other descriptive design data for each watershed and pipe segment evaluated. In addition, the attached "Drainage Areas Plans" graphically define and illustrate the real extent of each watershed or subcatchment area investigated.

Site Specific Soil Mapping has been performed on the portion of the site that is to be developed and is included in the further sections of this report. The USDA-NRCS Web Soils Survey was used to identify soil types outside the limits of the site specific soils mapping.

Pre-Developed Drainage Conditions

In general, the topography of the subject parcel slopes downward from the east to the west. The property is entirely undeveloped and forested. Based on the Site Specific Soil Survey performed by Northpoint Engineering, LLC, the underlying native soils within the upland areas of the property are predominantly hydrologic soils group (HSG) "A" and "B" soils.

The entire subject property lies within the watershed area of Bowen Brook which is a tributary of the Merrimack River, and is located approximately a mile to the west of the site. The entirety of the subject parcel drains directly to one of two unnamed tributary streams of Bowen Brook. The first stream cuts through the subject parcel and is conveyed under Shaker Road near the northwest corner of the parcel through an existing 12-inch culvert. This stream conveys runoff from a large wetland complex that lies adjacent to the east side of Shaker Road along the frontage of the subject parcel. The watershed area of this stream is approximately 64-acres in size and extends easterly all the way to Oak Hill Road.

The subject parces contains a large, contiguous upland area that is the subject area of the proposed development. This upland area, unlike the lower lying areas of the parcel, does not drain to the stream that flows through the parcel. Instead, it drains to the north and onto the abutting residential property. From there, runoff sheet drains to the north where it ultimately is discharged to the second unnamed tributary stream of Bowen Brook. This tributary stream crossed under Shaker Road about one-quarter mile north of the subject property.

In the pre-developed condition, the subject property has been divided into five separate subcatchment drainage areas. Subcatchment 10S includes a large, mostly offsite watershed that drains to the onsite stream, which in turn discharges to the 12-inch culvert under Shaker Road near the northwest corner of the property. This offsite watershed area includes portions of lots on Irving Drive, Oak Hill Road, Max Lane, and Bainbridge Drive, but is mostly wooded and undeveloped. Subcatchment 20S is the area that drains to an existing headwall near the southwest corner of the property where it enters the municipal storm drain system. Subcatchments 30S, 40S, and 50S are areas within the property boundary that drain offsite to the north and onto the adjacent residential property

The drainage analysis has identified five separate Points of Comparison (POC's) where stormwater is discharged from the site. POC #1 (Pond 10P) is the inlet end of existing 12-inch culvert which conveys the stream runoff from subcatchment 10S. POC #2 (Reach 20R) represents the existing headwall on Shaker Road which conveys runoff from subcatchment 20S. POC #3 (Reach 30R), POC #4 (Reach 40R), and POC, #5 (Reach 50R) represent three separate points where subcatchments 30S, 40S, and 50S respectively drain onto the adjacent property to the north. All three points are located just over the northern property boundary where runoff is conveyed to the neighboring property.

Post-Development Drainage Conditions

The proposed project will disturb approximately 280,000-acres of terrain and result in approximately 99,880-sf of new impervious surface areas. Stormwater runoff from the majority of paved surfaces, including private driveways, will be collected in a closed drainage system within the proposed roadways and will be conveyed to one of three separate Stormwater Management Basins (SWMB's) onsite. SWMB #1, SWMB #2, and SWMB #3 will provide treatment of the collected stormwater in accordance with NHDES AoT requirements and will be equipped with outlet control devices to ensure that the post-developed peaks flows from the site meet or exceed the NHDES AoT requirements.

SWMB#1 and SWMB #3 are designed as gravel wetlands, with additional storage capacity for larger storm events. The closed drainage system in the roadway will discharge to one of these two basins.

SWMB #2 is designed as a shallow, surface infiltration basin which will collect roof runoff and back yard areas from the first row of houses on the north side of the private roadway.

All five Points of Comparison identified in the above section were analyzed in the post-developed condition to ensure that there would not be any adverse effects experienced by the adjacent downstream properties or receiving drainage channels. The following sections describe in greater detail the treatment methods, groundwater recharge requirements, channel protection criteria and peak runoff control criteria.

Stormwater Treatment:

The site has been designed to provide permanent stormwater treatment in compliance with Env-Wq 1507.03 for the majority of runoff generated from the proposed site improvements. Stormwater runoff from the majority of the proposed roadways and residential units will be collected in a series of catch basins and directed into one of two proposed gravel wetlands (SWMB #1 and SWMB #3). A small portion of the site will drain directly to the shallow surface infiltration basin (SWMB #2).

SWMB #1, located west of Unit 1 and adjacent to Shaker Road, is designed as a Gravel Wetland basin. SWMB #3, located between Unit 9 and Unit 10, is also designed as a Gravel Wetland basin. Both basins contain a sediment forebay that will provide pre-treatment of the collected runoff and then a two-cell gravel wetland designed in compliance with Env-Wq 1508.05 for the water quality volume (WQV). Additional storage above the WQV will allow SWMB #1 and SWMB #3 to provide stormwater management for the 10-year and 50-year storms.

SWMB #2, located behind Units 1 thru 5, is designed as an Infiltration basin. It does not have any pretreatment component as it is not receiving any roadway runoff. Permanent treatment is accomplished through infiltration through the basin floor in compliance with Env-Wq 1508.06 for the WQV. Additional storage above the WQV will allow SWMB #2 to provide stormwater management for the 10-year and 50-year storms.

Groundwater Recharge:

As a result of the proposed development, the impervious surface area on the subject parcel will increase from 0-sf to 99,880-sf, an increase of 99,880-sf. The the new impervious surface area will displace 71,918-sf of undisturbed HSG "A" soils, 22,433-sf of undisturbed HSG "B" soils and 5,532-sf of undisturbed HSG "D" soils. This correlates to a required Groundwater Recharge Volume (GRV) of 2,865-cf. Proposed SWMB#2 (infiltration basin) will provide well in excess of this required amount. The volume of the infiltration basin, below the emergency spillway (lowest outfall) is 5,450-cf. All of this volume will be infiltrated. Therefore, the site exceeds the groundwater recharge requirements of Env-Wq 1507.04.

Channel Protection:

The site has been designed to provide downstream Channel Protection in compliance with Env-Wq 1507.05 through the implementation of Stormwater Management Basins. Points of Comparison POC #1, POC #2, POC #3, POC #4, and POC #5 were analyzed to demonstrate compliance at the locations where concentrated runoff is discharged from the site. The 2-year, 24-hour post-developed peak flow rate at each of these two Points of Comparison (POC) is <u>less</u> <u>than or equal to</u> the 2-year, 24-hour pre-developed peak flow rate, subject to mathematical rounding. Additionally, the 2-year, 24-hour post-developed storm volume at each POC has not increased over the pre-developed volume by more than 0.10-af. See Table 1 in the Summary of Results below for actual values. This meets the criteria of Env-Wq 1507.05 and will ensure that downstream stream channels and receiving waters are protected from erosion-causing volumes and flows.

Peak Runoff Control:

The site has been designed to provide Peak Runoff Control requirements in compliance with Env-Wq 1507.06 through the implementation of the Stormwater Management Basins. All five Points of Comparison were analyzed to demonstrate compliance with the peak runoff control requirements. The site has been designed such that both the 10-year and 50-year 24-hour postdeveloped peak flow rates do not exceed those of the pre-developed condition at any of the Points of Comparison, thus ensuring that downstream properties will not be adversely affected by the development. See Table 2 in the Summary of Results below for actual values.

Note that at POC#5, the HydroCAD model indicates an increase in runoff. This is a limitation of the software in analyzing small watershed areas. The affected subcatchment (50S) is actually reduced in size in the post-developed conditions, but due to the nature of the HSG "A" soils being removed from the subcatchment, its curve number is increased. In actuality, there is no reason to expect any increase in peak runoff at this POC.

City of Concord - Additional Stormwater Requirements

In addition to the requirements of Env-Wq 1507.06 above, the City of Concord requires runoff control for the 10-year storm volume and the 100-year storm peak flow. The proposed SWMB's described above have been designed to ensure that these additional design storm requirements have been met. Refer to Tables 4 and 5 in the Summary of Results below for actual values.

Summary of Results

		Volumes & Peak Rates of Runoff at Points of Comparison					
Location	Node	Volume (2-Year, 24-Hour)			Peak Runoff		
					(2-Year, 24-Hour)		
		Pre- Develop	Post- Develop	+ Increase/ (Decrease)	Pre- Develop	Post- Develop	+ Increase/ (Decrease)
P.O.C. #1	Pond 10P	0.5 af	0.5 af	(0.0 af)	0.8 cfs	0.8 cfs	(0.0 cfs)
P.O.C. #2	Reach 20R	0.0 af	0.0 af	(0.0 af)	0.0 cfs	0.0 cfs	(0.0 cfs)
P.O.C. #3	Reach 30R	0.0 af	0.0 af	(0.0 af)	0.0 cfs	0.0 cfs	(0.0 cfs)
P.O.C. #4	Reach 40R	0.0 af	0.0 af	(0.0 af)	0.0 cfs	0.0 cfs	(0.0 cfs)
P.O.C. #5	Reach 50R	0.0 af	0.0 af	(0.0 af)	0.0 cfs	0.0 cfs	(0.0 cfs)

Table 1. Channel Protection Summary

Table 2. Peak Runoff Control Summary

		Peak Rates of Runoff at Points of Comparison						
Location	Node	(10-Year, 24-Hour)			(50-Year, 24-Hour)			
		Pre- Develop	Post- Develop	+ Increase/ (Decrease)	Pre- Develop	Post- Develop	+ Increase/ (Decrease)	
P.O.C. #1	Pond 10P	7.0 cfs	6.8 cfs	(0.2 cfs)	28.3 cfs	27.9 cfs	(0.4 cfs)	
P.O.C. #2	Reach 20R	0.0 cfs	0.0 cfs	(0.0 cfs)	0.1 cfs	0.1 cfs	(0.0 cfs)	
P.O.C. #3	Reach 30R	0.0 cfs	0.0 cfs	(0.0 cfs)	0.0 cfs	0.0 cfs	(0.0 cfs)	
P.O.C. #4	Reach 40R	0.0 cfs	0.0 cfs	(0.0 cfs)	0.7 cfs	0.1 cfs	(0.6 cfs)	
P.O.C. #5	Reach 50R	0.0 cfs	0.1 cfs	+0.1 cfs*	0.2 cfs	0.5 cfs	+ 0.3 cfs*	

* Note that this increase is due to a limitation in the HydroCAD software, as noted in the Peak Runoff Control Section above.

Table 3. SWMB Summary (50-Year, 24-Storm)

SWMB# / Node	Peak In-Flow (cfs)	Peak Out-Flow (cfs)	High Water Elevation	Berm Elevation	Free Board	
SWMB #1 / 31P	4.8 cfs	0.3 cfs	324.07	326.00	1.93 ft	
SWMB #2 / 32P	1.8 cfs	0.5 cfs	325.53	326.00	0.47 ft	
SWMB #3 / 41P	10.1 cfs	0.4 cfs	331.79	333.00	1.21 ft	
		Peak Rates of Runoff at Points of Comparison				
-----------	-----------	---	------------------	---------------------------	--	--
Location	Node	(100-Year, 24-Hour)				
		Pre- Develop	Post- Develop	+ Increase/ (Decrease)		
P.O.C. #1	Pond 10P	44.8 cfs	44.6 cfs	(0.2 cfs)		
P.O.C. #2	Reach 20R	0.3 cfs	0.3 cfs	(0.0 cfs)		
P.O.C. #3	Reach 30R	0.1 cfs	0.1 cfs	(0.0 cfs)		
P.O.C. #4	Reach 40R	1.5 cfs	0.2 cfs	(1.3 cfs)		
P.O.C. #5	Reach 50R	0.5 cfs	0.7 cfs	+ 0.2 cfs*		

Table 4. 100-Year Peak Flow Summary

* Note that this increase is due to a limitation in the HydroCAD software, as noted in the Peak Runoff Control Section above.

Location	Nada	Volumes of Runoff at Points of Comparison (10-Year, 24-Hour)			
Location	Node	Pre- Develop	Post- Develop	+ Increase/ (Decrease)	
P.O.C. #1	Pond 10P	2.3 af	2.3 af	(0.0 af)	
P.O.C. #2	Reach 20R	0.0 af	0.0 af	(0.0 af)	
P.O.C. #3	Reach 30R	0.0 af	0.0 af	(0.0 af)	
P.O.C. #4	Reach 40R	0.0 af	0.0 af	(0.0 af)	
P.O.C. #5	Reach 50R	0.0 af	0.0 af	(0.0 af)	

Table 5. 10-Year Volume Summary

X. Drainage Analysis (Rev 2/28/22)

- Extreme Precipitation Table from National Regional Climate Center
- HydroCAD Output Data Pre-Developed
 - o Drainage Diagram
 - Area Listing and Soil Listing
 - Node Listing: 2-year, 10-year, 50-year, and 100-year
 - Full Summary: 10-year
- HydroCAD Output Data Post-Developed
 - Drainage Diagram
 - Area Listing and Soil Listing
 - Node Listing: 2-year, 10-year, 50-year, and 100-year
 - Full Summary: 10-year

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
3.400	51	1 acre lots, HSG A (10S)
4.393	68	1 acre lots, HSG B (10S)
3.390	79	1 acre lots, HSG C (10S)
2.593	84	1 acre lots, HSG D (10S)
2.789	61	1/4 acre lots, HSG A (10S)
0.478	98	Existing Pavement, HSG B (10S)
0.116	98	Existing Pavement, HSG D (10S)
37.704	30	Woods, HSG A (10S, 20S, 30S, 40S, 50S)
2.757	55	Woods, HSG B (10S, 20S, 40S)
2.952	70	Woods, HSG C (10S)
12.575	77	Woods, HSG D (10S, 20S, 40S, 50S)
73.148	50	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
43.893	HSG A	10S, 20S, 30S, 40S, 50S
7.628	HSG B	10S, 20S, 40S
6.342	HSG C	10S
15.284	HSG D	10S, 20S, 40S, 50S
0.000	Other	
73.148		TOTAL AREA

Subcatchment 10S: Large Watershed	Runoff Area=2,803,800 sf 0.92% Impervious Runoff Depth>0.09" Flow Length=3,168' Tc=78.2 min CN=52 Runoff=0.8 cfs 0.5 af
Subcatchment20S:	Runoff Area=137,425 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=682' Tc=27.8 min CN=33 Runoff=0.0 cfs 0.0 af
Subcatchment 30S:	Runoff Area=79,464 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=289' Tc=17.5 min CN=30 Runoff=0.0 cfs 0.0 af
Subcatchment40S:	Runoff Area=138,347 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=659' Tc=28.8 min CN=41 Runoff=0.0 cfs 0.0 af
Subcatchment 50S: Flow Length=	Runoff Area=27,286 sf 0.00% Impervious Runoff Depth>0.00" 100' Slope=0.1400 '/' Tc=10.5 min CN=43 Runoff=0.0 cfs 0.0 af
Reach 20R: POC #2 (Ex. CB)	Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af
Reach 30R: POC #3 n=0.035	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.0 cfs 0.0 af 5 L=340.0' S=0.0206 '/' Capacity=11.1 cfs Outflow=0.0 cfs 0.0 af
Reach 40R: POC #4	Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af
Reach 50R: POC #5	Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af
Pond 10P: POC #1 (Ex. 12" Culvert) Prima	Peak Elev=318.40' Storage=905 cf Inflow=0.8 cfs 0.5 af ry=0.8 cfs 0.5 af Secondary=0.0 cfs 0.0 af Outflow=0.8 cfs 0.5 af

Total Runoff Area = 73.148 acRunoff Volume = 0.5 afAverage Runoff Depth = 0.08"99.19% Pervious = 72.554 ac0.81% Impervious = 0.594 ac

Subcatchment 10S: Large Watershe	Runoff Area=2,803,800 sf 0.92% Impervious Runoff Depth>0.44" Flow Length=3,168' Tc=78.2 min CN=52 Runoff=7.0 cfs 2.3 af
Subcatchment20S:	Runoff Area=137,425 sf 0.00% Impervious Runoff Depth>0.00" Flow Length=682' Tc=27.8 min CN=33 Runoff=0.0 cfs 0.0 af
Subcatchment30S:	Runoff Area=79,464 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=289' Tc=17.5 min CN=30 Runoff=0.0 cfs 0.0 af
Subcatchment40S:	Runoff Area=138,347 sf 0.00% Impervious Runoff Depth>0.10" Flow Length=659' Tc=28.8 min CN=41 Runoff=0.0 cfs 0.0 af
Subcatchment 50S: Flow Le	Runoff Area=27,286 sf 0.00% Impervious Runoff Depth>0.15" ength=100' Slope=0.1400 '/' Tc=10.5 min CN=43 Runoff=0.0 cfs 0.0 af
Reach 20R: POC #2 (Ex. CB)	Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af
Reach 30R: POC #3	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.0 cfs 0.0 af =0.035 L=340.0' S=0.0206 '/' Capacity=11.1 cfs Outflow=0.0 cfs 0.0 af
Reach 40R: POC #4	Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af
Reach 50R: POC #5	Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af
Pond 10P: POC #1 (Ex. 12" Culvert)	Peak Elev=319.72' Storage=16,839 cf Inflow=7.0 cfs 2.3 af Primary=4.2 cfs 2.3 af Secondary=0.0 cfs 0.0 af Outflow=4.2 cfs 2.3 af

Total Runoff Area = 73.148 acRunoff Volume = 2.4 afAverage Runoff Depth = 0.39"99.19% Pervious = 72.554 ac0.81% Impervious = 0.594 ac

21045-PRE	Type III
Prepared by Northpoint Engineering, LLC	
HvdroCAD® 10.00-26 s/n 03184 © 2020 HvdroCAD Software Solution	ns LLC

Subcatchment 10S: Large Watersh	Runoff Area=2,803,800 sf 0.92% Impervious Runoff Depth>1.31" Flow Length=3,168' Tc=78.2 min CN=52 Runoff=28.3 cfs 7.0 af
Subcatchment 20S:	Runoff Area=137,425 sf 0.00% Impervious Runoff Depth>0.18" Flow Length=682' Tc=27.8 min CN=33 Runoff=0.1 cfs 0.0 af
Subcatchment 30S:	Runoff Area=79,464 sf 0.00% Impervious Runoff Depth>0.08" Flow Length=289' Tc=17.5 min CN=30 Runoff=0.0 cfs 0.0 af
Subcatchment40S:	Runoff Area=138,347 sf 0.00% Impervious Runoff Depth>0.58" Flow Length=659' Tc=28.8 min CN=41 Runoff=0.7 cfs 0.2 af
Subcatchment 50S: Flow L	Runoff Area=27,286 sf 0.00% Impervious Runoff Depth>0.71" ength=100' Slope=0.1400 '/' Tc=10.5 min CN=43 Runoff=0.2 cfs 0.0 af
Reach 20R: POC #2 (Ex. CB)	Inflow=0.1 cfs 0.0 af Outflow=0.1 cfs 0.0 af
Reach 30R: POC #3	Avg. Flow Depth=0.09' Max Vel=0.76 fps Inflow=0.0 cfs 0.0 af n=0.035 L=340.0' S=0.0206 '/' Capacity=11.1 cfs Outflow=0.0 cfs 0.0 af
Reach 40R: POC #4	Inflow=0.7 cfs 0.2 af Outflow=0.7 cfs 0.2 af
Reach 50R: POC #5	Inflow=0.2 cfs 0.0 af Outflow=0.2 cfs 0.0 af
Pond 10P: POC #1 (Ex. 12" Culvert	t) Peak Elev=321.73' Storage=95,595 cf Inflow=28.3 cfs 7.0 af Primary=6.9 cfs 5.8 af Secondary=6.8 cfs 0.9 af Outflow=13.7 cfs 6.6 af

Total Runoff Area = 73.148 acRunoff Volume = 7.3 afAverage Runoff Depth = 1.19"99.19% Pervious = 72.554 ac0.81% Impervious = 0.594 ac

21045-PRE	Type III 24-hr	100-year Rain	nfall=7.22"
Prepared by Northpoint Engineering, LLC		Printed	2/28/2022
HydroCAD® 10 00-26 s/n 03184 © 2020 HydroCAD Software Solutic	onsIIC		Page 4

2/28/2022 Page 4

Subcatchment 10S: Large Watershee	d Runoff Area=2,803,800 sf 0.92% Impervious Runoff Depth>1.93" Flow Length=3,168' Tc=78.2 min CN=52 Runoff=44.7 cfs 10.3 af
Subcatchment20S:	Runoff Area=137,425 sf 0.00% Impervious Runoff Depth>0.42" Flow Length=682' Tc=27.8 min CN=33 Runoff=0.3 cfs 0.1 af
Subcatchment 30S:	Runoff Area=79,464 sf 0.00% Impervious Runoff Depth>0.25" Flow Length=289' Tc=17.5 min CN=30 Runoff=0.1 cfs 0.0 af
Subcatchment40S:	Runoff Area=138,347 sf 0.00% Impervious Runoff Depth>0.99" Flow Length=659' Tc=28.8 min CN=41 Runoff=1.5 cfs 0.3 af
Subcatchment 50S: Flow Ler	Runoff Area=27,286 sf 0.00% Impervious Runoff Depth>1.17" ngth=100' Slope=0.1400 '/' Tc=10.5 min CN=43 Runoff=0.5 cfs 0.1 af
Reach 20R: POC #2 (Ex. CB)	Inflow=0.3 cfs 0.1 af Outflow=0.3 cfs 0.1 af
Reach 30R: POC #3	Avg. Flow Depth=0.14' Max Vel=1.02 fps Inflow=0.1 cfs 0.0 af 0.035 L=340.0' S=0.0206 '/' Capacity=11.1 cfs Outflow=0.1 cfs 0.0 af
Reach 40R: POC #4	Inflow=1.5 cfs 0.3 af Outflow=1.5 cfs 0.3 af
Reach 50R: POC #5	Inflow=0.5 cfs 0.1 af Outflow=0.5 cfs 0.1 af
Pond 10P: POC #1 (Ex. 12" Culvert) Prir	Peak Elev=321.99' Storage=112,553 cf Inflow=44.8 cfs 10.4 af mary=7.2 cfs 6.2 af Secondary=25.3 cfs 3.4 af Outflow=32.4 cfs 9.6 af

Total Runoff Area = 73.148 ac Runoff Volume = 10.8 af Average Runoff Depth = 1.77" 99.19% Pervious = 72.554 ac 0.81% Impervious = 0.594 ac

Summary for Subcatchment 10S: Large Watershed

Runoff = 7.0 cfs @ 13.38 hrs, Volume= 2.3 af, Depth> 0.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	A	rea (sf)	CN [Description			
*		20,818	98 E	Existing Pa	vement, HS	G B	
*		5,059	98 E	Existing Pa	vement, HS	G D	
*	1	48,095	51 1	1 acre lots, HSG A			
*	1	21,481	61 1	I/4 acre lots, HSG A			
*	1,3	46,491	30 \	Woods, HSG A			
*	1	91,378	68 1	l acre lots,	HSG B		
*	1	28,600	70 \	Noods, HS	GC		
*	1	47,658	79 1	l acre lots,	HSG C		
*	5	37,000	77 \	Voods, HS	G D		
*	1	12,960	84 ´	l acre lots,	HSG D		
*		44,260	55 \	<u>Noods, HS</u>	G B		
	2,8	03,800	52 \	Veighted A	verage		
	2,7	77,923	ç	99.08% Per	vious Area		
		25,877	().92% Impe	ervious Area	а	
	_		-				
	TC	Length	Slope	Velocity	Capacity	Description	
	(min)	(teet)	(ft/ft)	(ft/sec)	(cts)		
	13.2	100	0.0800	0.13		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 2.81"	
	2.9	283	0.1060	1.63		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	50.4	771	0.0026	0.25		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	11.7	2,014	0.0079	2.88	23.04	Channel Flow,	
						Area= 8.0 sf Perim= 12.0' r= 0.67' n= 0.035	

78.2 3,168 Total

Summary for Subcatchment 20S:

Runoff = 0.0 cfs @ 24.00 hrs, Volume= 0.0 af, Depth> 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	Area (sf)	CN	Description	
*	120,662	30	Noods, HSG A	
*	14,392	55	Voods, HSG B	
*	2,371	77	Woods, HSG D	
	137,425 137,425	33	Weighted Average 100.00% Pervious Area	

21045-	PRE				Type III 24-nr 1	0-		
Prepare	Prepared by Northpoint Engineering, LLC							
HydroCA	HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Software Solutions LLC							
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•			

(min)	(feet)	(ft/ft)	(ft/sec)	(cts)
11.2	100	0.1200	0.15	Sheet Flow,
				Woods: Light underbrush n= 0.400 P2= 2.81"
16.6	582	0.0137	0.59	Shallow Concentrated Flow,
				Woodland Kv= 5.0 fps

27.8 682 Total

Summary for Subcatchment 30S:

Runoff 0.0 cfs @ 0.00 hrs, Volume= 0.0 af, Depth= 0.00" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	A	rea (sf)	CN D	Description		
*		79,464	30 V	Voods, HS	G A	
		79,464	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	13.2	100	0.0800	0.13		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.81"
	4.3	189	0.0212	0.73		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	17.5	289	Total			

Summary for Subcatchment 40S:

0.0 cfs @ 15.07 hrs, Volume= Runoff 0.0 af, Depth> 0.10" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

_	A	rea (sf)	CN	Description		
*		76,068	30	Woods, HS	G A	
*		61,446	55	Woods, HS	G B	
_		833	77	Woods, HS	G D	
	1 1	38,347 38,347	41	Weighted A 100.00% Pe	verage ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	13.2	100	0.0800	0.13		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.81"
_	15.6	559	0.0143	0.60		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	28.8	659	Total			

21045-PRF

111 21_h 10 -year Rainfall=4.13" Printed 2/28/2022

Page 2

Summary for Subcatchment 50S:

Runoff = 0.0 cfs @ 13.66 hrs, Volume= 0.0 af, Depth> 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	A	rea (sf)	CN	Description		
*		19,720	30	Woods, HS	G A	
*		7,566	77	Woods, HS	G D	
		27,286 27,286	43	Weighted A 100.00% Pe	verage ervious Are	а
	Tc (min)	Length (feet)	Slop (ft/ft	e Velocity t) (ft/sec)	Capacity (cfs)	Description
	10.5	100	0.140	0 0.16		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.81"

Summary for Reach 20R: POC #2 (Ex. CB)

Inflow /	Area	=	3.155 ac,	0.00% Impervio	us, Inflow	Depth > 0	0.00" for	10-year event
Inflow		=	0.0 cfs @	24.00 hrs, Vol	ume=	0.0 af		-
Outflov	N	=	0.0 cfs @	24.00 hrs, Vol	ume=	0.0 af,	Atten= 0%	, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach 30R: POC #3

Inflow Area =1.824 ac, 0.00% Impervious, Inflow Depth = 0.00" for 10-year eventInflow =0.0 cfs0.00 hrs, Volume=0.0 afOutflow =0.0 cfs0.00 hrs, Volume=0.0 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 11.1 cfs

0.00' x 1.00' deep channel, n= 0.035 Side Slope Z-value= 3.0 '/' Top Width= 6.00' Length= 340.0' Slope= 0.0206 '/' Inlet Invert= 326.00', Outlet Invert= 319.00'

Summary for Reach 40R: POC #4

Inflow /	Area	=	3.176 ac,	0.00% Imperviou	s, Inflow	Depth > (0.10" fo	or 10-year event
Inflow		=	0.0 cfs @	15.07 hrs, Volu	me=	0.0 af		
Outflov	V	=	0.0 cfs @	15.07 hrs, Volu	me=	0.0 af,	Atten= 0)%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach 50R: POC #5

Inflow .	Area	=	0.626 ac,	0.00% Impervious,	Inflow Depth >	0.15" for	10-year event
Inflow		=	0.0 cfs @	13.66 hrs, Volume	e= 0.0 af		
Outflow	W	=	0.0 cfs @	13.66 hrs, Volume	e= 0.0 af,	Atten= 0%	, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Pond 10P: POC #1 (Ex. 12" Culvert)

Inflow Area	=	66.191 ac,	0.90% Impervious,	Inflow Depth > 0	.42" for 10-y	year event
Inflow	=	7.0 cfs @	13.38 hrs, Volume	= 2.3 af		
Outflow	=	4.2 cfs @	14.73 hrs, Volume	= 2.3 af,	Atten= 40%, I	Lag= 81.1 min
Primary	=	4.2 cfs @	14.73 hrs, Volume	= 2.3 af		-
Secondary	=	0.0 cfs @	0.00 hrs, Volume	= 0.0 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 319.72' @ 14.73 hrs Surf.Area= 19,592 sf Storage= 16,839 cf

Plug-Flow detention time= 47.7 min calculated for 2.3 af (99% of inflow) Center-of-Mass det. time= 41.9 min (1,021.5 - 979.5)

Volume	Inve	rt Avail.Sto	rage	Storage	Description	
#1	317.90)' 112,90	05 cf	Custom	i Stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio	on S et)	Surf.Area (sq-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)	
317.9	90	0		0	0	
318.0	00	5		0	0	
320.0	00	22,800	2	2,805	22,805	
322.0	00	67,300	9	0,100	112,905	
Device	Routing	Invert	Outle	et Device	S	
#1	Primary	317.90'	12.0 Inlet	Round / Outlet I	Culvert L= 37. nvert= 317.90' /	.0' Ke= 0.500 317.70' S= 0.0054 '/' Cc= 0.900 ight & cleap, Flow Area= 0.79 sf
#2	Secondar	y 321.52'	30.0 Head 2.50 Coef 2.65	l (feet) 0 3.00 3.0 2.67 2.0	5.0' breadth Bro .20 0.40 0.60 50 4.00 4.50 5 n) 2.34 2.50 2. 66 2.68 2.70 2	Dad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .00 5.50 70 2.68 2.66 2.65 2.65 2.65 .74 2.79 2.88

Primary OutFlow Max=4.2 cfs @ 14.73 hrs HW=319.72' (Free Discharge) **1=Culvert** (Barrel Controls 4.2 cfs @ 5.30 fps)

Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=317.90' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.0 cfs)

Area Listing (all nodes)

CN	Description
	(subcatchment-numbers)
51	1 acre lots, HSG A (11S)
68	1 acre lots, HSG B (11S)
79	1 acre lots, HSG C (11S)
84	1 acre lots, HSG D (11S)
61	1/4 acre lots, HSG A (11S)
98	Existing Pavement, HSG B (11S)
98	Existing Pavement, HSG D (11S)
39	Lawn/Landscape, HSG A (12S, 31S, 32S, 33S, 34S, 41S, 42S, 43S, 44S, 51S)
61	Lawn/Landscape, HSG B (41S, 42S, 43S, 44S)
80	Lawn/Landscape, HSG D (12S, 31S, 43S)
98	Proposed Buildings & Patios, HSG A (31S, 32S, 41S, 42S, 43S)
98	Proposed Buildings & Patios, HSG B (41S, 42S, 43S)
98	Proposed Buildings & Patios, HSG D (43S)
98	Proposed Pavement, HSG A (12S, 31S, 42S)
98	Proposed Pavement, HSG B (42S)
98	Proposed Pavement, HSG D (11S, 12S, 31S)
98	SWMB's, HSG A (33S, 43S)
98	SWMB's, HSG B (43S)
30	Woods, HSG A (11S, 20S, 51S)
55	Woods, HSG B (11S, 20S)
70	Woods, HSG C (11S)
77	Woods, HSG D (11S, 20S, 51S)
52	TOTAL AREA
	CN 51 68 79 84 61 98 98 39 61 80 98 98 98 98 98 98 98 98 98 98 98 98 98

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
43.893	HSG A	11S, 12S, 20S, 31S, 32S, 33S, 34S, 41S, 42S, 43S, 44S, 51S
7.628	HSG B	11S, 20S, 41S, 42S, 43S, 44S
6.342	HSG C	11S
15.284	HSG D	11S, 12S, 20S, 31S, 43S, 51S
0.000	Other	
73.148		TOTAL AREA

21045-POST	Тy
Prepared by Northpoint Engineering, LLC	
HvdroCAD® 10.00-26 s/n 03184 © 2020 HvdroCAD Software Solution	sLLC

Subcatchment 11S: Large Watershed	Runoff Area=2,744,009 sf 1.04% Impervious Runoff Depth>0.09" Flow Length=3,121' Tc=77.7 min CN=52 Runoff=0.8 cfs 0.4 af
Subcatchment12S:	Runoff Area=15,821 sf 18.68% Impervious Runoff Depth>0.36" Tc=5.0 min CN=63 Runoff=0.1 cfs 0.0 af
Subcatchment 20S:	Runoff Area=137,425 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=682' Tc=27.8 min CN=33 Runoff=0.0 cfs 0.0 af
Subcatchment31S:	Runoff Area=41,868 sf 64.99% Impervious Runoff Depth>0.94" Tc=5.0 min CN=77 Runoff=1.0 cfs 0.1 af
Subcatchment 32S:	Runoff Area=37,948 sf 28.04% Impervious Runoff Depth>0.17" Tc=5.0 min CN=56 Runoff=0.0 cfs 0.0 af
Subcatchment 33S:	Runoff Area=9,366 sf 45.47% Impervious Runoff Depth>0.46" Tc=5.0 min CN=66 Runoff=0.1 cfs 0.0 af
Subcatchment 34S:	Runoff Area=7,851 sf 0.00% Impervious Runoff Depth=0.00" Tc=5.0 min CN=39 Runoff=0.0 cfs 0.0 af
Subcatchment41S:	Runoff Area=63,469 sf 19.19% Impervious Runoff Depth>0.19" Flow Length=496' Tc=15.6 min CN=57 Runoff=0.1 cfs 0.0 af
Subcatchment42S:	Runoff Area=60,456 sf 60.48% Impervious Runoff Depth>0.99" Tc=5.0 min CN=78 Runoff=1.6 cfs 0.1 af
Subcatchment43S:	Runoff Area=46,051 sf 33.46% Impervious Runoff Depth>0.39" Tc=5.0 min CN=64 Runoff=0.3 cfs 0.0 af
Subcatchment44S:	Runoff Area=4,061 sf 0.00% Impervious Runoff Depth>0.05" Tc=5.0 min CN=49 Runoff=0.0 cfs 0.0 af
Subcatchment 51S:	Runoff Area=17,997 sf 0.00% Impervious Runoff Depth>0.07" Flow Length=193' Tc=8.9 min CN=51 Runoff=0.0 cfs 0.0 af
Reach 12R: Prop. 36" Culvert 36.0" Round Pipe n=0.012	Avg. Flow Depth=0.28' Max Vel=2.33 fps Inflow=0.8 cfs 0.4 af L=56.0' S=0.0036 '/' Capacity=43.2 cfs Outflow=0.8 cfs 0.4 af
Reach 20R: POC #2 (Ex. CB)	Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af
Reach 30R: POC #3 n=0.035	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.0 cfs 0.0 af L=340.0' S=0.0206 '/' Capacity=11.1 cfs Outflow=0.0 cfs 0.0 af
Reach 40R: POC #4	Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af

21045-POST

Prepared by Northpoint Engineering, LLC HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-year Rainfall=2.81" Printed 2/28/2022 LLC Page 2

Reach 50R: POC #5

Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af

Pond 10P: POC #1 (Ex. 12" Culvert)	Peak Elev=318.40' Storage=739 cf Inflow=0.8 cfs 0. Primary=0.8 cfs 0.5 af Secondary=0.0 cfs 0.0 af Outflow=0.8 cfs 0.5	5 af 5 af
Pond 30P: Level Spreader	Peak Elev=320.00' Storage=0 cf Inflow=0.0 cfs 0.0 Discarded=0.0 cfs 0.0 af Primary=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0	0 af 0 af
Pond 31P: SWMB#1	Peak Elev=322.61' Storage=2,248 cf Inflow=1.1 cfs 0. Primary=0.0 cfs 0.0 af Secondary=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0	1 af 0 af
Pond 32P: SWMB #2	Peak Elev=324.00' Storage=0 cf Inflow=0.1 cfs 0. Discarded=0.1 cfs 0.1 af Primary=0.0 cfs 0.0 af Outflow=0.1 cfs 0.	1 af 1 af
Pond 41P: SWMB#3	Peak Elev=329.53' Storage=4,361 cf Inflow=1.9 cfs 0.1 Primary=0.1 cfs 0.1 af Secondary=0.0 cfs 0.0 af Outflow=0.1 cfs 0.	2 af 1 af
Pond CB1:	Peak Elev=322.61' Inflow=1.0 cfs 0. 5.0" Round Culvert n=0.012 L=24.0' S=0.0062 '/' Outflow=1.0 cfs 0.	1 af 1 af
Pond CB5: 15	.0" Round Culvert n=0.012 L=149.0' S=0.0050 '/' Outflow=0.1 cfs 0	0 af 0 af
Pond CB6:	Peak Elev=331.06' Inflow=1.6 cfs 0. 5.0" Round Culvert n=0.012 L=66.0' S=0.0120 '/' Outflow=1.6 cfs 0.	1 af 1 af
Pond DM1:	.0 Peak Elev=320.41' Inflow=0.0 cfs 5.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=0.0 cfs	0 af 0 af
Pond DM2:	Peak Elev=329.53' Inflow=1.6 cfs 0. 5.0" Round Culvert n=0.012 L=22.0' S=0.0068 '/' Outflow=1.6 cfs 0.	1 af 1 af
Pond DM3: 15	Peak Elev=327.45' Inflow=0.1 cfs 0. 0" Round Culvert n=0.012 L=167.0' S=0.0054 '/' Outflow=0.1 cfs 0.	1 af 1 af
Total Runoff Area =	= 73.148 ac Runoff Volume = 0.7 af Average Runoff Depth = 95.68% Pervious = 69.985 ac 4.32% Impervious = 3.16	0.12" 63 ac

21045-POST	Туре
Prepared by Northpoint Engineering, LLC	
HvdroCAD® 10.00-26 s/n 03184 © 2020 HvdroCAD Software Solution	ons LLC

Subcatchment11S: Large Watershed	Runoff Area=2,744,009 sf 1.04% Impervious Runoff Depth>0.44" Flow Length=3,121' Tc=77.7 min CN=52 Runoff=6.8 cfs 2.3 af
Subcatchment12S:	Runoff Area=15,821 sf 18.68% Impervious Runoff Depth>0.99" Tc=5.0 min CN=63 Runoff=0.4 cfs 0.0 af
Subcatchment20S:	Runoff Area=137,425 sf 0.00% Impervious Runoff Depth>0.00" Flow Length=682' Tc=27.8 min CN=33 Runoff=0.0 cfs 0.0 af
Subcatchment31S:	Runoff Area=41,868 sf 64.99% Impervious Runoff Depth>1.91" Tc=5.0 min CN=77 Runoff=2.2 cfs 0.2 af
Subcatchment 32S:	Runoff Area=37,948 sf 28.04% Impervious Runoff Depth>0.63" Tc=5.0 min CN=56 Runoff=0.5 cfs 0.0 af
Subcatchment33S:	Runoff Area=9,366 sf 45.47% Impervious Runoff Depth>1.16" Tc=5.0 min CN=66 Runoff=0.3 cfs 0.0 af
Subcatchment34S:	Runoff Area=7,851 sf 0.00% Impervious Runoff Depth>0.06" Tc=5.0 min CN=39 Runoff=0.0 cfs 0.0 af
Subcatchment41S:	Runoff Area=63,469 sf 19.19% Impervious Runoff Depth>0.67" Flow Length=496' Tc=15.6 min CN=57 Runoff=0.6 cfs 0.1 af
Subcatchment42S:	Runoff Area=60,456 sf 60.48% Impervious Runoff Depth>1.99" Tc=5.0 min CN=78 Runoff=3.3 cfs 0.2 af
Subcatchment43S:	Runoff Area=46,051 sf 33.46% Impervious Runoff Depth>1.04" Tc=5.0 min CN=64 Runoff=1.2 cfs 0.1 af
Subcatchment44S:	Runoff Area=4,061 sf 0.00% Impervious Runoff Depth>0.34" Tc=5.0 min CN=49 Runoff=0.0 cfs 0.0 af
Subcatchment 51S:	Runoff Area=17,997 sf 0.00% Impervious Runoff Depth>0.41" Flow Length=193' Tc=8.9 min CN=51 Runoff=0.1 cfs 0.0 af
Reach 12R: Prop. 36" Culvert 36.0" Round Pipe n=0.012	Avg. Flow Depth=0.80' Max Vel=4.46 fps Inflow=6.8 cfs 2.3 af L=56.0' S=0.0036 '/' Capacity=43.2 cfs Outflow=6.8 cfs 2.3 af
Reach 20R: POC #2 (Ex. CB)	Inflow=0.0 cfs 0.0 af Outflow=0.0 cfs 0.0 af
Reach 30R: POC #3 n=0.035	Avg. Flow Depth=0.03' Max Vel=0.40 fps Inflow=0.0 cfs 0.0 af L=340.0' S=0.0206 '/' Capacity=11.1 cfs Outflow=0.0 cfs 0.0 af
Reach 40R: POC #4	Inflow=0.0 cfs 0.0 af

Outflow=0.0 cfs 0.0 af

24	O A E		CT
Z 1	U43·	-PU	31

Prepared by Northpoint Engineering, LLC HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-year Rainfall=4.13" Printed 2/28/2022 s LLC Page 4

Inflow=0.1 cfs 0.0 af Reach 50R: POC #5 Outflow=0.1 cfs 0.0 af Pond 10P: POC #1 (Ex. 12" Culvert) Peak Elev=319.80' Storage=14,999 cf Inflow=6.8 cfs 2.3 af Primary=4.3 cfs 2.3 af Secondary=0.0 cfs 0.0 af Outflow=4.3 cfs 2.3 af Peak Elev=320.51' Storage=408 cf Inflow=0.1 cfs 0.1 af Pond 30P: Level Spreader Discarded=0.1 cfs 0.1 af Primary=0.1 cfs 0.0 af Outflow=0.1 cfs 0.1 af Pond 31P: SWMB#1 Peak Elev=323.28' Storage=4,324 cf Inflow=2.5 cfs 0.2 af Primary=0.0 cfs 0.0 af Secondary=0.1 cfs 0.1 af Outflow=0.1 cfs 0.1 af Peak Elev=324.60' Storage=1,756 cf Inflow=0.5 cfs 0.3 af Pond 32P: SWMB #2 Discarded=0.2 cfs 0.2 af Primary=0.0 cfs 0.0 af Outflow=0.2 cfs 0.2 af Pond 41P: SWMB#3 Peak Elev=330.49' Storage=10,325 cf Inflow=4.7 cfs 0.4 af Primary=0.1 cfs 0.1 af Secondary=0.1 cfs 0.1 af Outflow=0.2 cfs 0.2 af Pond CB1: Peak Elev=323.28' Inflow=2.2 cfs 0.2 af 15.0" Round Culvert n=0.012 L=24.0' S=0.0062 '/' Outflow=2.2 cfs 0.2 af Pond CB5: Peak Elev=330.49' Inflow=0.6 cfs 0.1 af 15.0" Round Culvert n=0.012 L=149.0' S=0.0050 '/' Outflow=0.6 cfs 0.1 af Peak Elev=331.40' Inflow=3.3 cfs 0.2 af Pond CB6: 15.0" Round Culvert n=0.012 L=66.0' S=0.0120 '/' Outflow=3.3 cfs 0.2 af Pond DM1: Peak Elev=320.57' Inflow=0.1 cfs 0.1 af 15.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=0.1 cfs 0.1 af Pond DM2: Peak Elev=330.49' Inflow=3.5 cfs 0.3 af 15.0" Round Culvert n=0.012 L=22.0' S=0.0068 '/' Outflow=3.5 cfs 0.3 af Pond DM3: Peak Elev=327.55' Inflow=0.2 cfs 0.2 af 15.0" Round Culvert n=0.012 L=167.0' S=0.0054 '/' Outflow=0.2 cfs 0.2 af Total Runoff Area = 73.148 ac Runoff Volume = 3.0 af Average Runoff Depth = 0.49"

95.68% Pervious = 69.985 ac 4.32% Impervious = 3.163 ac

21045-POST	Туре
Prepared by Northpoint Engineering, LLC	
HvdroCAD® 10.00-26 s/n 03184 © 2020 HvdroCAD Software Solution	ns LLC

Subcatchment11S: Large Waters	hed Runoff Area=2,744,009 sf 1.04% Impervious Runoff Depth>1.31" Flow Length=3,121' Tc=77.7 min CN=52 Runoff=27.8 cfs 6.9 af
Subcatchment12S:	Runoff Area=15,821 sf 18.68% Impervious Runoff Depth>2.24" Tc=5.0 min CN=63 Runoff=1.0 cfs 0.1 af
Subcatchment20S:	Runoff Area=137,425 sf 0.00% Impervious Runoff Depth>0.18" Flow Length=682' Tc=27.8 min CN=33 Runoff=0.1 cfs 0.0 af
Subcatchment31S:	Runoff Area=41,868 sf 64.99% Impervious Runoff Depth>3.56" Tc=5.0 min CN=77 Runoff=4.2 cfs 0.3 af
Subcatchment32S:	Runoff Area=37,948 sf 28.04% Impervious Runoff Depth>1.65" Tc=5.0 min CN=56 Runoff=1.6 cfs 0.1 af
Subcatchment33S:	Runoff Area=9,366 sf 45.47% Impervious Runoff Depth>2.51" Tc=5.0 min CN=66 Runoff=0.6 cfs 0.0 af
Subcatchment 34S:	Runoff Area=7,851 sf 0.00% Impervious Runoff Depth>0.47" Tc=5.0 min CN=39 Runoff=0.0 cfs 0.0 af
Subcatchment41S:	Runoff Area=63,469 sf 19.19% Impervious Runoff Depth>1.73" Flow Length=496' Tc=15.6 min CN=57 Runoff=2.0 cfs 0.2 af
Subcatchment42S:	Runoff Area=60,456 sf 60.48% Impervious Runoff Depth>3.66" Tc=5.0 min CN=78 Runoff=6.2 cfs 0.4 af
Subcatchment43S:	Runoff Area=46,051 sf 33.46% Impervious Runoff Depth>2.33" Tc=5.0 min CN=64 Runoff=2.9 cfs 0.2 af
Subcatchment44S:	Runoff Area=4,061 sf 0.00% Impervious Runoff Depth>1.12" Tc=5.0 min CN=49 Runoff=0.1 cfs 0.0 af
Subcatchment 51S:	Runoff Area=17,997 sf 0.00% Impervious Runoff Depth>1.26" Flow Length=193' Tc=8.9 min CN=51 Runoff=0.5 cfs 0.0 af
Reach 12R: Prop. 36" Culvert 36.0" Round Pipe	Avg. Flow Depth=1.75' Max Vel=6.49 fps Inflow=27.8 cfs 6.9 af n=0.012 L=56.0' S=0.0036 '/' Capacity=43.2 cfs Outflow=27.8 cfs 6.9 af
Reach 20R: POC #2 (Ex. CB)	Inflow=0.1 cfs 0.0 af Outflow=0.1 cfs 0.0 af
Reach 30R: POC #3	Avg. Flow Depth=0.11' Max Vel=0.86 fps Inflow=0.0 cfs 0.0 af n=0.035 L=340.0' S=0.0206 '/' Capacity=11.1 cfs Outflow=0.0 cfs 0.0 af
Reach 40R: POC #4	Inflow=0.1 cfs 0.0 af

Outflow=0.1 cfs 0.0 af

21	045-POST	
Z I	U43-FU31	

Prepared by Northpoint Engineering, LLC HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Software Solutions LLC

 Type III 24-hr
 50-year Rainfall=6.10"

 Printed
 2/28/2022

 s LLC
 Page 6

Reach 50R: POC #5	Inflow=0.5 cfs (0.0 af
	Outflow=0.5 cfs (0.0 af
	Dealy Flav-224 771 Store re-04 240 of Inflav-27 0 of a	71.5
Pond 10P: POC #1 (Ex. 12" Cuive	$\mathbf{r}_{\mathbf{f}} = \mathbf{r}_{\mathbf{f}} + $	7.1ai 60.af
		J.5 ai
Pond 30P: Level Spreader	Peak Elev=321.77' Storage=870 cf Inflow=0.3 cfs (0.3 af
	Discarded=0.1 cfs 0.1 af Primary=0.4 cfs 0.2 af Outflow=0.5 cfs 0).2 af
Pond 31 P. SW/MR#1	Peak Elev=324 07' Storage=8 128 cf Inflow=4.8 cfs (0 4 af
	Primary=0.0 cfs 0.1 af Secondary=0.2 cfs 0.2 af Outflow=0.3 cfs 0	0.3 af
Pond 32P: SWMB #2	Peak Elev=325.53' Storage=5,616 cf Inflow=1.8 cfs (0.5 af
	Discarded=0.3 cfs 0.3 at Primary=0.1 cfs 0.1 at Outflow=0.5 cfs 0	J.4 af
Pond 41P: SWMB#3	Peak Elev=331.79' Storage=23,040 cf Inflow=10.1 cfs (0.8 af
	Primary=0.1 cfs 0.1 af Secondary=0.3 cfs 0.3 af Outflow=0.4 cfs 0	0.4 af
Daniel OD4:		0.0.5
Pond CB1:	15.0" Round Culvert n=0.012 L=24.0' S=0.0062 '/' Outflow=4.2 cfs (0.3 af
		5.0 ai
Pond CB5:	Peak Elev=331.80' Inflow=2.0 cfs (0.2 af
	15.0" Round Culvert n=0.012 L=149.0' S=0.0050 '/' Outflow=2.0 cfs ().2 af
Pond CB6	Peak Elev=332.69' Inflow=6.2 cfs (0.4 af
	15.0" Round Culvert n=0.012 L=66.0' S=0.0120 '/' Outflow=6.2 cfs (0.4 af
Pond DM1:	Peak Elev=321.//' Inflow=0.3 cfs (15.0" Round Culvert, n=0.012, L=20.0', S=0.0050, '/', Outflow=0.3 cfs (0.3 af
		J.J ai
Pond DM2:	Peak Elev=331.80' Inflow=7.2 cfs(0.6 af
	15.0" Round Culvert n=0.012 L=22.0' S=0.0068 '/' Outflow=7.2 cfs ().6 af
Pond DM3.	Peak Flev=327.63' Inflow=0.4 cfs. (0 4 af
	15.0" Round Culvert n=0.012 L=167.0' S=0.0054 '/' Outflow=0.4 cfs (0.4 af
Total Runoff Area	i = 73.148 ac Runoff Volume = 8.3 af Average Runoff Depth =	= 1.36"

95.68% Pervious = 69.985 ac 4.32% Impervious = 3.163 ac

21045-POST	Type III 24-hr	10
Prepared by Northpoint Engineering, LLC		
HydroCAD® 10 00-26 s/n 03184 © 2020 HydroCAD Software Solutio	nsIIC	

Subcatchment11S: Large Watershed	Runoff Area=2,744,009 sf 1.04% Impervious Runoff Depth>1.93" Flow Length=3,121' Tc=77.7 min CN=52 Runoff=43.8 cfs 10.1 af
Subcatchment12S:	Runoff Area=15,821 sf 18.68% Impervious Runoff Depth>3.06" Tc=5.0 min CN=63 Runoff=1.3 cfs 0.1 af
Subcatchment20S:	Runoff Area=137,425 sf 0.00% Impervious Runoff Depth>0.42" Flow Length=682' Tc=27.8 min CN=33 Runoff=0.3 cfs 0.1 af
Subcatchment31S:	Runoff Area=41,868 sf 64.99% Impervious Runoff Depth>4.56" Tc=5.0 min CN=77 Runoff=5.3 cfs 0.4 af
Subcatchment32S:	Runoff Area=37,948 sf 28.04% Impervious Runoff Depth>2.36" Tc=5.0 min CN=56 Runoff=2.4 cfs 0.2 af
Subcatchment33S:	Runoff Area=9,366 sf 45.47% Impervious Runoff Depth>3.37" Tc=5.0 min CN=66 Runoff=0.9 cfs 0.1 af
Subcatchment34S:	Runoff Area=7,851 sf 0.00% Impervious Runoff Depth>0.85" Tc=5.0 min CN=39 Runoff=0.1 cfs 0.0 af
Subcatchment41S:	Runoff Area=63,469 sf 19.19% Impervious Runoff Depth>2.45" Flow Length=496' Tc=15.6 min CN=57 Runoff=3.0 cfs 0.3 af
Subcatchment42S:	Runoff Area=60,456 sf 60.48% Impervious Runoff Depth>4.67" Tc=5.0 min CN=78 Runoff=7.8 cfs 0.5 af
Subcatchment43S:	Runoff Area=46,051 sf 33.46% Impervious Runoff Depth>3.17" Tc=5.0 min CN=64 Runoff=4.0 cfs 0.3 af
Subcatchment44S:	Runoff Area=4,061 sf 0.00% Impervious Runoff Depth>1.70" Tc=5.0 min CN=49 Runoff=0.2 cfs 0.0 af
Subcatchment51S:	Runoff Area=17,997 sf 0.00% Impervious Runoff Depth>1.88" Flow Length=193' Tc=8.9 min CN=51 Runoff=0.7 cfs 0.1 af
Reach 12R: Prop. 36" Culvert 36.0" Round Pipe n=0.012	Avg. Flow Depth=2.50' Max Vel=6.96 fps Inflow=43.8 cfs 10.1 af 2 L=56.0' S=0.0036 '/' Capacity=43.2 cfs Outflow=43.8 cfs 10.1 af
Reach 20R: POC #2 (Ex. CB)	Inflow=0.3 cfs 0.1 af Outflow=0.3 cfs 0.1 af
Reach 30R: POC #3	Avg. Flow Depth=0.16' Max Vel=1.08 fps Inflow=0.1 cfs 0.0 af 35 L=340.0' S=0.0206 '/' Capacity=11.1 cfs Outflow=0.1 cfs 0.0 af
Reach 40R: POC #4	Inflow=0.2 cfs 0.0 af

Outflow=0.2 cfs 0.0 af

21045-POST	Type III 24-hr	100-year Rainfall=7.22"
Prepared by Northpoint Engin	eering, LLC	Printed 2/28/2022
HydroCAD® 10.00-26 s/n 03184	© 2020 HydroCAD Software Solutions LLC	Page 8
Paach 50P · POC #5		Inflow=0.7 cfs 0.1 af
Reach JUR. FOC #J		Outflow=0.7 cfs_0.1 af
Pond 10P: POC #1 (Ex. 12" Cul	vert) Peak Elev=322.13' Storage=97,505	cf Inflow=44.6 cfs 10.7 af
	Primary=7.3 cfs 6.2 af Secondary=39.0 cfs 3.9 a	f Outflow=46.3 cfs 10.1 af
Dand 20Di Laval Spraadar	Dook Elov-222 12' Storage-9	70 of Inflow-1.7 of 0.6 of
Pond 30P: Level Spreader	Discarded=0.1 cfs 0.1 af Primary=2.1 cfs 0.5	af Outflow=2.2 cfs 0.6 af
Pond 31P: SWMB#1	Peak Elev=324.72' Storage=11,6	37 cf Inflow=6.2 cfs 0.8 af
	Primary=1.4 cfs 0.3 af Secondary=0.3 cfs 0.3	af Outflow=1.7 cfs 0.6 af
Dand 22D: CM/MD #2	Dook Elov-225 65' Storago-6 1	95 of Inflow-2.6 of 0.0 of
Pond 32P: 5WWB #2	Discarded=0.3 cfs 0.4 af Primary=1.4 cfs 0.3	s ci innow=2.6 cis 0.6 ai
Pond 41P: SWMB#3	Peak Elev=332.00' Storage=25,31	8 cf Inflow=13.5 cfs 1.1 af
	Primary=1.3 cfs 0.4 af Secondary=0.3 cfs 0.3	af Outflow=1.6 cfs 0.7 af
Dond CR1:	Dook Flour-22	4.72' Inflow-5.2 of 0.4 of
Pond CB1:	15.0" Round Culvert n=0.012 I =24.0' S=0.006	2 // Outflow=5.3 cfs 0.4 af
Pond CB5:	Peak Elev=33	3.33' Inflow=3.0 cfs 0.3 af
	15.0" Round Culvert n=0.012 L=149.0' S=0.0050	0 '/' Outflow=3.0 cfs 0.3 af
Pond CB6:	Peak Flav=33	/ 81' Inflow=7.8 cfs 0.5 af
	15.0" Round Culvert n=0.012 L=66.0' S=0.012) '/' Outflow=7.8 cfs 0.5 af
Pond DM1:	Peak Elev=32	2.19' Inflow=1.7 cfs 0.6 af
	15.0" Round Culvert n=0.012 L=20.0' S=0.0050	0 '/' Outflow=1.7 cfs 0.6 af
Pond DM2	Peak Flev=33	3 15' Inflow=9 5 cfs 0 8 af
	15.0" Round Culvert n=0.012 L=22.0' S=0.006	8 '/' Outflow=9.5 cfs 0.8 af
Pond DM3:	Peak Elev=32	7.96' Inflow=1.6 cfs 0.7 af
	15.0" Round Culvert n=0.012 L=167.0' S=0.0054	4 '/' Outflow=1.6 cfs 0.7 af
Total Runoff Ar	a = 73 148 ac Runoff Volume = 12 1 af Ave	rage Runoff Depth = 1 99"
	95.68% Pervious = 69.985 ac 4.32	2% Impervious = 3.163 ac

Summary for Subcatchment 11S: Large Watershed

Runoff = 6.8 cfs @ 13.38 hrs, Volume= 2.3 af, Depth> 0.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

_	A	rea (sf)	CN I	Description						
*		20,818	98 I	Existing Pa	vement, HS	SG B				
*		5,059	98 I	Existing Pa	kisting Pavement, HSG D					
*		2,695	98 I	Proposed P	avement, F	HSG D				
*	1	48,095	51 ⁻	1 acre lots,	HSG A					
*	1	21,481	61 [·]	1/4 acre lots	s, HSG A					
*	1,3	02,027	30 \	Noods, HS	G A					
*	1	91,378	68 ´	1 acre lots,	HSG B					
*	1	28,600	70 \	Noods, HS	GC					
*	1	47,658	79 ⁻	1 acre lots,	HSG C					
*	5	26,711	77 \	Noods, HS	G D					
*	1	12,960	84 <i>°</i>	1 acre lots,	HSG D					
*		36,527	55 \	Noods, HS	G B					
	2,7	44,009	52 \	Neighted A	verage					
	2,7	15,437	ę	98.96% Per	rvious Area					
	28,572 1.04% Impervious Area									
	_				_					
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	13.2	100	0.0800	0.13		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 2.81"				
	2.9	283	0.1060	1.63		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	50.4	771	0.0026	0.25		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	11.2	1,967	0.0081	2.92	23.33	Channel Flow,				
						Area= 8.0 st Perim= 12.0' r= 0.67' n= 0.035				
	77.7	3,121	Total							

Summary for Subcatchment 12S:

Runoff = 0.4 cfs @ 12.09 hrs, Volume= 0.0 af, Depth> 0.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	Area (sf)	CN	Description
*	580	98	Proposed Pavement, HSG A
*	2,376	98	Proposed Pavement, HSG D
*	7,756	39	Lawn/Landscape, HSG A
*	5,109	80	Lawn/Landscape, HSG D
	15,821	63	Weighted Average
	12,865		81.32% Pervious Area
	2,956		18.68% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,				
Summary for Subcatchment 20S:									
Runoff	=	0.0 cf	s@ 24.0	00 hrs, Vol	ume= 0.0 af, Depth> 0.00"				
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"									
A	rea (sf)	CN D	escription	<u> </u>					
* 1 *	20,662	30 W	loods, HS	GA					
*	2.371	77 W	loods, HS	G D					
1	137,425 33 Weighted Average 137,425 100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
11.2	100	0.1200	0.15		Sheet Flow,				
16.6	582	0.0137	0.59		Woods: Light underbrush n= 0.400 P2= 2.81" Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
27.8	682	Total							

Summary for Subcatchment 31S:

Runoff = $2.2 \text{ cfs} (\alpha) = 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ af}, \text{ Depth} > 12.08 \text{ hrs}, \text{ Volume} = 0.2 \text{ hrs}, $	1.91"
---	-------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	Area (sf)	CN	Description				
*	19,868	98	Proposed Pavement, HSG A				
*	63	98	Proposed Pavement, HSG D				
*	7,280	98	Proposed Buildings & Patios, HSG A				
*	14,611	39	Lawn/Landscape, HSG A				
*	46	80	Lawn/Landscape, HSG D				
	41,868	77	Weighted Average				
	14,657		35.01% Pervious Area				
	27,211		64.99% Impervious Area				
(m	Tc Length in) (feet)	Slop (ft/f	e Velocity Capacity Description t) (ft/sec) (cfs)				
Ę	5.0		Direct Entry,				

Summary for Subcatchment 32S:

Runoff = 0.5 cfs @ 12.10 hrs, Volume= 0.0 af, Depth> 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	Area (sf)	CN	Description					
*	10,640	98	Proposed B	uildings & I	Patios, HSG A			
*	27,308	39	Lawn/Lands	_awn/Landscape, HSG A				
(37,948 27,308 10,640 Tc Length min) (feet)	56 Slop (ft/f	Weighted A 71.96% Per 28.04% Imp be Velocity ft) (ft/sec)	verage vious Area pervious Are Capacity (cfs)	a rea Description			
	5.0				Direct Entry,			

Summary for Subcatchment 33S:

Runoff = 0.3 cfs @ 12.08 hrs, Volume= 0.0 af, Depth> 1.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	Area (sf)	CN	Description						
*	4,259	98	SWMB's, H	SG A					
*	5,107	39	Lawn/Lands	Lawn/Landscape, HSG A					
	9,366 5,107 4,259	66	Weighted A 54.53% Per 45.47% Imp	verage vious Area pervious Ar	a rea				
T (mir	c Length) (feet)	Slop (ft/ft	e Velocity t) (ft/sec)	Capacity (cfs)	Description				
5.	0				Direct Entry,				

Summary for Subcatchment 34S:

Runoff = 0.0 cfs @ 15.26 hrs, Volume= 0.0 af, Depth> 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	Area (sf)	CN	Description	
*	7,851	39	Lawn/Landscape, HSG A	
	7,851		100.00% Pervious Area	

21045- Prepare	POST d by Nor	thpoint E	Ingineerir		Type III 24-hr	10-year Rainfall=4.13" Printed 2/28/2022	
HydroCA	D® 10.00-	26 s/n 03	184 © 202	0 HydroCAL	Software Solutio	ns LLC	Page 4
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
5.0					Direct Entry,		
			Sun	mary for	Subcatchme	ent 41S:	
Runoff	=	0.6 cf	s @ 12.2	8 hrs, Volu	ume= 0.	1 af, Depth> 0.6	67"
Runoff b Type III 2	y SCS TF 24-hr 10-	R-20 meth year Rair	nod, UH=S nfall=4.13"	CS, Weigh	ted-CN, Time Sp	oan= 0.00-24.00	hrs, dt= 0.01 hrs
A	rea (sf)	CN D	escription				
* * * *	5,398 6,780 30,621 20 670	98 P 98 P 39 La	roposed B roposed B awn/Lands awn/Lands	uildings & l uildings & l scape, HSC scape, HSC	Patios, HSG A Patios, HSG B G A G B		
	63,469 51,291 12,178	57 W 80 19	/eighted A 0.81% Per 9.19% Imp	verage vious Area pervious Are	ea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
13.9	100	0.0700	0.12		Sheet Flow, Woods: Light u	nderbrush n= 0	.400 P2= 2.81"
1.7	396	0.0177	3.77	30.17	Channel Flow Area= 8.0 sf P	, erim= 12 0' r= 0	67' n= 0 040
15.6	496	Total				0	
			Sun	nmary for	Subcatchme	ent 42S:	
Runoff	=	3.3 cf	s@ 12.0	8 hrs, Volu	ume= 0.	2 af, Depth> 1.9	99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

21045-POST					Type III 24-hr 10-year Rainfall=4.13"			
Prepare	d by Nor	thpoint E	Engineerii	ng, LLC) Software So	Printed 2/28/2022		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		raye o	
5.0	(1 /	(1411)	(()	Direct Ent	ry,		
			Sur	nmary fo	r Subcatch	nment 43S:		
Runoff	=	1.2 cf	s@ 12.0)9 hrs, Vol	ume=	0.1 af, Depth> 1	.04"	
Runoff b Type III :	y SCS TR 24-hr 10-	R-20 meth year Rair	nod, UH=S nfall=4.13"	CS, Weigh	ited-CN, Tim	e Span= 0.00-24.00) hrs, dt= 0.01 hrs	
A	rea (sf)	CN D	escription					
* * * * *	5,340 1,881 403 1,167 6,618 20,816 9,396 430 46,051	98 P 98 P 98 S 98 S 98 S 39 L 61 L 80 L 64 W	roposed E roposed E WMB's, H WMB's, H awn/Lands awn/Lands /eighted A	Buildings & Buildings & SG A SG B Scape, HSC Scape, HSC Scape, HSC verage	Patios, HSG Patios, HSG Patios, HSG A B B B B D	A B D		
	30,642 15,409	6	6.54% Pe 3.46% Imp	vious Area pervious Ar	ea			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	1		
5.0					Direct Ent	ry,		
			Sur	nmary fo	r Subcatch	nment 44S:		
Runoff	=	0.0 cf	fs @ 12.3	81 hrs, Vol	ume=	0.0 af, Depth> 0).34"	
Runoff b Type III 2	y SCS TR 24-hr 10-	R-20 meth year Rair	nod, UH=S nfall=4.13"	CS, Weigh	ited-CN, Tim	e Span= 0.00-24.00) hrs, dt= 0.01 hrs	
۸	roa (cf)		ascription					

	Area (st)	CN	Description						
*	2,246	39	Lawn/Landscape, HSG A						
*	1,815	61	Lawn/Lands	awn/Landscape, HSG B					
	4,061	49	Weighted A	verage					
	4,061		100.00% Pe	ervious Are	ea				
_				_					
	C Length	Slope	e Velocity	Capacity	Description				
(mi	n) (feet)	(ft/ft)) (ft/sec)	(cfs)					
5	.0				Direct Entry,				

Summary for Subcatchment 51S:

Runoff = 0.1 cfs @ 12.31 hrs, Volume= 0.0 af, Depth> 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.13"

	A	rea (sf)	CN	Description						
*		3,037	39	9 Lawn/Landscape, HSG A						
*		7,394	30	Woods, HS	Voods, HSG A					
*		7,566	77	Woods, HS	G D					
		17,997 17,997	51	Weighted A 100.00% Pe	verage ervious Are	a				
	Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description				
	7.2	100	0.0500	0.23		Sheet Flow,				
	1.7	93	0.0323	3 0.90		Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
	0 0	102	Tatal							

8.9 193 Total

Summary for Reach 12R: Prop. 36" Culvert

 Inflow Area =
 62.994 ac,
 1.04% Impervious, Inflow Depth >
 0.44"
 for
 10-year event

 Inflow =
 6.8 cfs @
 13.38 hrs,
 Volume=
 2.3 af

 Outflow =
 6.8 cfs @
 13.38 hrs,
 Volume=
 2.3 af,

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 4.46 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.09 fps, Avg. Travel Time= 0.3 min

Peak Storage= 85 cf @ 13.38 hrs Average Depth at Peak Storage= 0.80' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 43.2 cfs

36.0" Round Pipe n= 0.012 Length= 56.0' Slope= 0.0036 '/' Inlet Invert= 319.10', Outlet Invert= 318.90'

Summary for Reach 20R: POC #2 (Ex. CB)

Inflow /	Area	a =	3.155 ac,	0.00% Impe	ervious,	Inflow	Depth >	0.00" f	or 1	0-year event
Inflow		=	0.0 cfs @	24.00 hrs,	Volum	e=	0.0 af			-
Outflov	V	=	0.0 cfs @	24.00 hrs,	Volum	e=	0.0 af,	Atten=	0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach 30R: POC #3

Inflow /	Area	=	0.180 ac,	0.00% Impe	ervious,	Inflow	Depth >	0.06"	for 1	0-year eve	ent
Inflow		=	0.0 cfs @	15.26 hrs,	Volume) =	0.0 af			-	
Outflov	V	=	0.0 cfs @	15.46 hrs,	Volume	9=	0.0 af	, Atten=	= 1%,	Lag= 11.7	7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 0.40 fps, Min. Travel Time= 14.3 min Avg. Velocity = 0.36 fps, Avg. Travel Time= 15.7 min

Peak Storage= 1 cf @ 15.46 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 11.1 cfs

0.00' x 1.00' deep channel, n= 0.035 Side Slope Z-value= 3.0 '/' Top Width= 6.00' Length= 340.0' Slope= 0.0206 '/' Inlet Invert= 326.00', Outlet Invert= 319.00'

Summary for Reach 40R: POC #4

Inflow A	Area	=	0.093 ac,	0.00% Impervious,	Inflow Depth >	0.34" for 1	0-year event
Inflow	=	=	0.0 cfs @	12.31 hrs, Volum	e= 0.0 af		-
Outflow	/ =	=	0.0 cfs @	12.31 hrs, Volum	e= 0.0 af,	Atten= 0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach 50R: POC #5

Inflow Are	ea =	0.413 ac,	0.00% Impervious,	Inflow Depth > (0.41" for 1	0-year event
Inflow	=	0.1 cfs @	12.31 hrs, Volume	e= 0.0 af		-
Outflow	=	0.1 cfs @	12.31 hrs, Volume	e= 0.0 af,	Atten= 0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Pond 10P: POC #1 (Ex. 12" Culvert)

Inflow Area =	69.487 ac,	4.55% Impervious, In	flow Depth > 0.41"	for 10-year event
Inflow =	6.8 cfs @	13.38 hrs, Volume=	2.3 af	
Outflow =	4.3 cfs @	14.62 hrs, Volume=	2.3 af, Atten	= 37%, Lag= 74.5 min
Primary =	4.3 cfs @	14.62 hrs, Volume=	2.3 af	
Secondary =	0.0 cfs @	0.00 hrs, Volume=	0.0 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 319.80' @ 14.62 hrs Surf.Area= 16,700 sf Storage= 14,999 cf

Plug-Flow detention time= 40.0 min calculated for 2.3 af (99% of inflow) Center-of-Mass det. time= 35.4 min (1,013.7 - 978.3)

Volume	Invert	Avail.Stor	rage Storage	e Description	
#1	317.90'	97,50	05 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	on Si it)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
317.9 318.0 320.0 322.0	90 90 90 90	0 5 18,600 60,300	0 0 18,605 78,900	0 0 18,605 97,505	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	317.90'	12.0" Round Inlet / Outlet n= 0.011 Co	d Culvert L= 37 Invert= 317.90' / ncrete pipe, strai	.0' Ke= 0.500 317.70' S= 0.0054 '/' Cc= 0.900 ight & clean, Flow Area= 0.79 sf
#2	#2 Secondary 321.		30.0' long x Head (feet) (2.50 3.00 3. Coef. (Englis 2.65 2.67 2.	5.0' breadth Br 5.20 0.40 0.60 50 4.00 4.50 5 h) 2.34 2.50 2. 66 2.68 2.70 2	Dad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .00 5.50 70 2.68 2.68 2.66 2.65 2.65 2.65 .74 2.79 2.88

Primary OutFlow Max=4.3 cfs @ 14.62 hrs HW=319.80' (Free Discharge) —1=Culvert (Barrel Controls 4.3 cfs @ 5.50 fps)

Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=317.90' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.0 cfs)

Summary for Pond 30P: Level Spreader

Inflow Area	=	5.949 ac, 4	1.00% Impe	rvious, Inflow	Depth >	0.19" fo	r 10-year event
Inflow	=	0.1 cfs @	14.90 hrs,	Volume=	0.1 af		-
Outflow	=	0.1 cfs @	14.93 hrs,	Volume=	0.1 af,	Atten= 0	%, Lag= 1.9 min
Discarded	=	0.1 cfs @	14.93 hrs,	Volume=	0.1 af		-
Primary	=	0.1 cfs @	14.93 hrs,	Volume=	0.0 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Peak Elev= 320.51' @ 14.93 hrs Surf.Area= 875 sf Storage= 408 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 25.8 min (1,044.5 - 1,018.7)

Volume	Inve	ert Avail.Sto	orage Storage	Description	
#1	320.0	0' 8	70 cf Custom	Stage Data (Prismatic)Listed below (Recalc)	
Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
320.0 321.0	00 00	710 1,030	0 870	0 870	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	320.50'	17.0' long x 2 Head (feet) 0 2.50 3.00 3.5 Coef. (English	2.0' breadth Broad-Crested Rectangular Weir 2.0 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 50 1) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88)
#2	Discarde	d 320.00'	3.000 in/hr Ex	xfiltration over Surface area	

Discarded OutFlow Max=0.1 cfs @ 14.93 hrs HW=320.51' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=0.1 cfs @ 14.93 hrs HW=320.51' TW=319.78' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.1 cfs @ 0.31 fps)

Summary for Pond 31P: SWMB#1

Inflow Area	=	5.949 ac, 4	1.00% Impe	ervious, In	flow Depth >	0.35"	for 10-y	ear event	
Inflow =	=	2.5 cfs @	12.08 hrs,	Volume=	0.2 at	f	-		
Outflow =	=	0.1 cfs @	14.90 hrs,	Volume=	0.1 at	f, Atten=	95%, L	_ag= 169.4	4 min
Primary =	=	0.0 cfs @	14.23 hrs,	Volume=	0.0 at	f		•	
Secondary =	=	0.1 cfs @	14.90 hrs,	Volume=	0.1 at	f			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 323.28' @ 14.90 hrs Surf.Area= 4,487 sf Storage= 4,324 cf

Plug-Flow detention time= 295.1 min calculated for 0.1 af (56% of inflow) Center-of-Mass det. time= 177.7 min (1,018.7 - 841.0)

Volume	Invert	Avail.Storage	Storage Description
#1	321.00'	736 cf	Sediment Forebay (Prismatic)Listed below (Recalc)
#2	321.00'	1,179 cf	Gravel Wetland - Bay #1 (Prismatic)Listed below (Recalc)
#3	321.00'	1,179 cf	Gravel Wetland - Bay #2 (Prismatic)Listed below (Recalc)
#4	323.00'	16,605 cf	Upper Detention Basin (Prismatic)Listed below (Recalc)
		19,699 cf	Total Available Storage

21045-POST

Prepared by Northpoint Engi	ineering, LLC	
HydroCAD® 10.00-26 s/n 03184	© 2020 HydroCAD Software Solutions I	LL

Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
321.0)()	159	0	0			
323.0	00	574	733	733			
323.0)1	0	3	736			
Elevatio	on	Surf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
321.0)0	315	0	0			
323.0	00	860	1,175	1,175			
323.0)1	0	4	1,179			
Elevatio	on	Surf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
321.0	00	315	0	0			
323.0	00	860	1,175	1,175			
323.0)1	0	4	1,179			
Elevatio	on	Surf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
323.0	00	4,258	0	0			
324.0	00	5,072	4,665	4,665			
326.0	00	6,868	11,940	16,605			
Device	Routing	Invert	Outlet Devices				
#1	Primary	320.50'	6.0" Round Cu	Ivert L= 5.0'	Ke= 0.500		
			Inlet / Outlet Inv	ert= 320.50' /	320.40' S= 0.0200 '/' Cc= 0.900		
			n= 0.012, Flow	Area= 0.20 sf			
#2	Device 1	320.50'	1.0" Vert. Orific	ce/Grate C=	0.600		
#3	Device 1	324.50'	4.0' long Sharp	-Crested Rec	tangular Weir 2 End Contraction(s)		
#4	Seconda	condary 321.00' 15.0" Round Culvert L= 30.0' Ke= 0.500					
			Inlet / Outlet Inv	ert= 321.00' /	320.40' S= 0.0200 '/' Cc= 0.900		
	n= 0.012, Flow Area= 1.23 sf						
#5	5 Device 4 323.00' 3.0" Vert. Orifice/Grate C= 0.600						
<i>#</i> 6	#6 Device 4 325.00 48.0" x 48.0" Horiz. Orifice/Grate C= 0.600						
	Limited to weir flow at low neads						
Primary OutFlow Max=0.0 cfs @ 14.23 hrs HW=323.27' TW=320.54' (Dynamic Tailwater)							
$f(1) = \frac{1}{2} \int \frac{1}{2}$							

1=Culvert (Passes 0.0 cfs of 1.5 cfs potential flow) **2=Orifice/Grate** (Orifice Controls 0.0 cfs @ 7.96 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.0 cfs)

Secondary OutFlow Max=0.1 cfs @ 14.90 hrs HW=323.28' TW=320.57' (Dynamic Tailwater) 4=Culvert (Passes 0.1 cfs of 7.6 cfs potential flow) -5=Orifice/Grate (Orifice Controls 0.1 cfs @ 1.90 fps)

-6=Orifice/Grate (Controls 0.0 cfs)

Summary for Pond 32P: SWMB #2

Inflow Area	1 =	1.773 ac, 3	5.97% Impe	rvious, Inflow D	epth > C).66" fo	or 10-y	/ear event	
Inflow	=	0.5 cfs @	12.10 hrs,	Volume=	0.3 af				
Outflow	=	0.2 cfs @	20.25 hrs,	Volume=	0.2 af,	Atten=	55%, l	_ag= 488.8 I	min
Discarded	=	0.2 cfs @	20.25 hrs,	Volume=	0.2 af				
Primary	=	0.0 cfs @	0.00 hrs,	Volume=	0.0 af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 324.60' @ 20.25 hrs Surf.Area= 3,398 sf Storage= 1,756 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 38.0 min (1,075.0 - 1,037.0)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	324.00	' 8,04	41 cf Custom	n Stage Data (Pris	matic)Listed below (Recalc)
Elevatio	on S et) 00	urf.Area (sq-ft) 2.471	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet) 0	
326.0	00	5,570	8,041	8,041	
Device	Routing	Invert	Outlet Device	S	
#1 #2	Discarded Primary	324.00' 325.50'	3.000 in/hr E 10.0' long x Head (feet) 0 2.50 3.00 3. Coef. (English 2.65 2.67 2.	xfiltration over Su 5.0' breadth Broa 0.20 0.40 0.60 0.6 50 4.00 4.50 5.0 1) 2.34 2.50 2.70 66 2.68 2.70 2.74	urface area d-Crested Rectangular Weir 80 1.00 1.20 1.40 1.60 1.80 2.00 0 5.50 9 2.68 2.68 2.66 2.65 2.65 2.65 4 2.79 2.88

Discarded OutFlow Max=0.2 cfs @ 20.25 hrs HW=324.60' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.2 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=324.00' TW=321.00' (Dynamic Tailwater) **2=Broad-Crested Rectangular Weir** (Controls 0.0 cfs)

Summary for Pond 41P: SWMB#3

Inflow Area	=	3.902 ac, 37	7.74% Impe	rvious, Inflow	/ Depth > 1.24	l" for 10∙	-year event
Inflow :	=	4.7 cfs @	12.08 hrs,	Volume=	0.4 af		
Outflow :	=	0.2 cfs @	16.06 hrs,	Volume=	0.2 af, Att	en= 95%,	Lag= 238.8 min
Primary :	=	0.1 cfs @	16.06 hrs,	Volume=	0.1 af		
Secondary :	=	0.1 cfs @	16.06 hrs,	Volume=	0.1 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 330.49' @ 16.06 hrs Surf.Area= 8,655 sf Storage= 10,325 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 205.1 min (1,064.2 - 859.0)
21045-POST

Type III 24-hr 10-year Rainfall=4.13" Printed 2/28/2022 s LLC Page 12

Volume	Invert	Avail.Sto	<u>rage</u> St	orage De	escription	
#1	328.00'	73	34 cf Se	ediment	Forebay (Pri	smatic)Listed below (Recalc)
#2	328.00'	2,75	57 cf G I	ravel We	tland - Bay #	1 (Prismatic)Listed below (Recalc)
#3	328.00'	2,78	35 cf G I	ravel We	tland - Bay #	2 (Prismatic) Listed below (Recalc)
#4	330.00'	31,20	02 cf U	oper Det	ention Basin	(Prismatic)Listed below (Recalc)
		37,47	79 cf To	otal Availa	able Storage	
Elevation	Surf.	Area	Inc.St	ore	Cum.Store	
(feet)) ()	sq-ft)	(cubic-fe	et)	(cubic-feet)	
328.00		160		0	0	
330.00		571	7	'31	731	
330.01		0		3	734	
Elevation	Surf	Area	Inc.St	ore	Cum.Store	
(teet)		sq-ft)	(cubic-te	et)	(cubic-feet)	
328.00		870		0	0	
330.00		1,878	2,7	'48	2,748	
330.01		0		9	2,757	
Elevation	Surf.	Area	Inc.St	ore	Cum.Store	
(feet)		sq-ft)	(cubic-fe	et)	(cubic-feet)	
328.00		880		0	0	
330.00		1,896	2,7	76	2,776	
330.01		0		9	2,785	
Elevation	Surf.	Area	Inc.Ste	ore	Cum.Store	
(feet)) (1	sq-ft)	(cubic-fe	et)	(cubic-feet)	
330.00	-	7.810	•	0	0	
332.00	11	1,246	19,0)56	19,056	
333.00	13	3,046	12,1	46	31,202	
Device I	Routing	Invert	Outlet E	Devices		
#1 I	Primary	327.50'	6.0" Ro	ound Cu	lvert L= 19.0	' Ke= 0.500
			n = 0.01		$Prt = 327.50^{\circ}/$	327.40° S= 0.0053 7° Cc= 0.900
# <u></u> 2 I	Davias 1	207 501			Area 0.20 Si	0.600
#Z I		327.30	1.5 Ve	rt. Urific	e/Grate C-	U.000
#3 I		331.00		g Sharp		
#4	Secondary	320.00	1 5.0	Kouna Ci	UIVERT L- 24.	10 Ke = 0.300
			n=0.01		Aroo 1 22 of	527.40 S- 0.0250 / CC- 0.900
#5 1	Device 1	330 00'	2 0" Vo	∠, ⊓IUW / rt Orifia	$\alpha = 1.23$ SI	0 600
#5 I #6 I		330.00			ergiale $\bigcirc -$	2rato C= 0.600
<i>π</i> υ I		552.00	Limited	to weir fl	ow at low hea	ads

Prepared by Northpoint Engineering, LLC HydroCAD® 10.00-26 s/n 03184 © 2020 HydroCAD Software Solutions LLC Primary OutFlow Max=0.1 cfs @ 16.06 hrs HW=330.49' TW=327.55' (Dynamic Tailwater) 1=Culvert (Passes 0.1 cfs of 1.5 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.1 cfs @ 8.24 fps) 3=Sharp-Crested Rectangular Weir (Controls 0.0 cfs)

Secondary OutFlow Max=0.1 cfs @ 16.06 hrs HW=330.49' TW=327.55' (Dynamic Tailwater) 4=Culvert (Passes 0.1 cfs of 8.1 cfs potential flow) 5=Orifice/Grate (Orifice Controls 0.1 cfs @ 2.92 fps)

6=Orifice/Grate (Controls 0.0 cfs)

Summary for Pond CB1:

Inflow Area	=	0.961 ac, 64	4.99% Impe	rvious, Inflow	/ Depth >	1.91" 1	for 1	0-year event
Inflow	=	2.2 cfs @	12.08 hrs,	Volume=	0.2 af			
Outflow	=	2.2 cfs @	12.08 hrs,	Volume=	0.2 af,	Atten=	0%,	Lag= 0.0 min
Primary	=	2.2 cfs @	12.08 hrs,	Volume=	0.2 af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 323.28' @ 14.90 hrs Flood Elev= 326.26'

Device	Routing	Invert	Outlet Devices
#1	Primary	321.65'	15.0" Round Culvert L= 24.0' Ke= 0.500 Inlet / Outlet Invert= 321.65' / 321.50' S= 0.0062 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=2.0 cfs @ 12.08 hrs HW=322.56' TW=322.30' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.0 cfs @ 2.97 fps)

Summary for Pond CB5:

 Inflow Area =
 1.457 ac, 19.19% Impervious, Inflow Depth > 0.67" for 10-year event

 Inflow =
 0.6 cfs @ 12.28 hrs, Volume=
 0.1 af

 Outflow =
 0.6 cfs @ 12.28 hrs, Volume=
 0.1 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.6 cfs @ 12.28 hrs, Volume=
 0.1 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 330.49' @ 16.05 hrs Flood Elev= 331.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	329.50'	15.0" Round Culvert L= 149.0' Ke= 0.500 Inlet / Outlet Invert= 329.50' / 328.75' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=0.6 cfs @ 12.28 hrs HW=330.09' TW=329.89' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.6 cfs @ 1.51 fps)

Summary for Pond CB6:

Inflow Area	=	1.388 ac, 60	0.48% Impervious,	Inflow Depth >	1.99" fo	or 10-year event
Inflow	=	3.3 cfs @	12.08 hrs, Volume	;= 0.2 af		-
Outflow	=	3.3 cfs @	12.08 hrs, Volume	;= 0.2 af	, Atten=	0%, Lag= 0.0 min
Primary	=	3.3 cfs @	12.08 hrs, Volume)= 0.2 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 331.40' @ 12.08 hrs Flood Elev= 335.24'

Device	Routing	Invert	Outlet Devices
#1	Primary	330.44'	15.0" Round Culvert L= 66.0' Ke= 0.500 Inlet / Outlet Invert= 330.44' / 329.65' S= 0.0120 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=3.3 cfs @ 12.08 hrs HW=331.39' TW=329.80' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 3.3 cfs @ 3.33 fps)

Summary for Pond DM1:

Inflow Are	a =	5.949 ac, 4	1.00% Impervious,	Inflow Depth >	0.19" for	10-year event
Inflow	=	0.1 cfs @	14.90 hrs, Volum	e= 0.1 af		
Outflow	=	0.1 cfs @	14.90 hrs, Volum	e= 0.1 af	, Atten= 0%	, Lag= 0.0 min
Primary	=	0.1 cfs @	14.90 hrs, Volum	e= 0.1 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 320.57' @ 14.91 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	320.30'	15.0" Round Culvert L= 20.0' Ke= 0.500 Inlet / Outlet Invert= 320.30' / 320.20' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=0.1 cfs @ 14.90 hrs HW=320.57' TW=320.51' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.1 cfs @ 1.08 fps)

Summary for Pond DM2:

Inflow Area	=	2.845 ac, 🗧	39.33%	Impe	rvious,	Inflow	Depth >	1.31"	for 1	0-year event
Inflow	=	3.5 cfs @	12.08	hrs,	Volume)=	0.3 af			
Outflow	=	3.5 cfs @	12.08	hrs,	Volume)=	0.3 af,	Atten=	0%,	Lag= 0.0 min
Primary	=	3.5 cfs @	12.08	hrs,	Volume	; =	0.3 af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 330.49' @ 16.05 hrs Flood Elev= 335.24'

Device	Routing	Invert	Outlet Devices
#1	Primary	328.65'	15.0" Round Culvert L= 22.0' Ke= 0.500
			Inlet / Outlet Invert= 328.65' / 328.50' S= 0.0068 '/' Cc= 0.900

n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=3.5 cfs @ 12.08 hrs HW=329.80' TW=329.12' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 3.5 cfs @ 3.90 fps)

Summary for Pond DM3:

Inflow Area	=	3.902 ac, 3	37.74% Imp	ervious,	Inflow I	Depth >	0.67" 1	for 1	0-year event
Inflow	=	0.2 cfs @	16.06 hrs,	Volume) =	0.2 af			
Outflow	=	0.2 cfs @	16.06 hrs	Volume) =	0.2 af,	Atten=	0%,	Lag= 0.0 min
Primary	=	0.2 cfs @	16.06 hrs,	Volume	9=	0.2 af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 327.55' @ 16.06 hrs

Device	Routing	Invert	Outlet Devices				
#1	Primary	327.30'	15.0" Round Culvert L= 167.0' Ke= 0.500 Inlet / Outlet Invert= 327.30' / 326.40' S= 0.0054 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf				
Primary OutFlow Max=0.2 cfs @ 16.06 hrs HW=327.55' TW=324.47' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.2 cfs @ 2.11 fps)							