P.O. Box 1721 • Concord, NH 03302 tel: (603) 731-8500 • fax: (866) 929-6094 • sgp@ pernaw.com

Transportation: Engineering • Planning • Design

MEMORANDUM

Ref: 2150A

To: J. Chris Nadeau, P.E.

Nobis

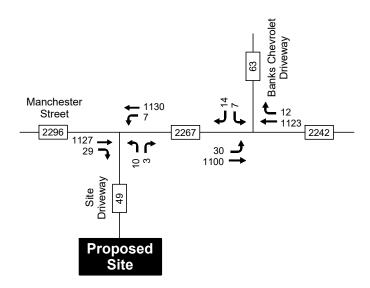
From: Stephen G. Pernaw, P.E., PTOE

Subject: Proposed Grappone Mazda Dealership

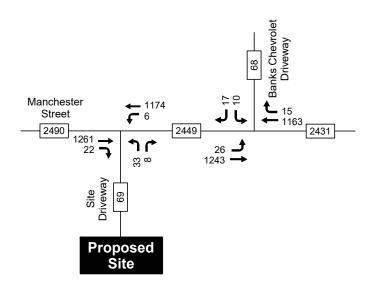
Concord, New Hampshire

Date: February 4, 2022

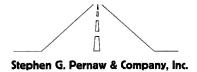
Background - On November 29, 2021, Pernaw & Company, Inc. published the report entitled "Traffic Impact Assessment-Proposed Automobile Dealership" for the Mazda dealership that will be located at 134 Manchester Street, along with Addendum One dated January 24, 2022 that addressed the recent change in building size. As requested at the meeting with city staff on January 24, 2022, our office has determined the appropriate amount of lateral separation between the existing Banks Chevrolet driveway (on the north side of Manchester Street) and the proposed Grappone Mazda driveway (on the south side of Manchester Street). This was accomplished by obtaining turning movement count data at the Banks Chevrolet driveway, preparing 2033 design hour volumes for the two subject driveways, and preparing vehicle queuing estimates based on three generally accepted methodologies.


<u>Design Hour Volumes</u> - Figure 1 summarizes the 2033 AM and PM peak hour traffic volumes for the subject driveways. These traffic volumes formed the basis for the vehicle queuing analyses.

<u>Vehicle Queuing Results</u> - The tabulation below summarizes the various results for the AM and PM peak hour periods. Method 3 produced the most conservative results, and indicates that the 95th percentile queues are 1 vehicle for the Grappone driveway and 2 vehicles for Banks driveway.


VEHICLE QUEUING SUMMARY - 2033

	WB Left-Turn Arrivals (Grappone)	EB Left-Turn Arrivals (Banks)
2033 AM Peak Hour - LT Volume	7 vehicles	30 vehicles
Method 1: AASHTO Queue	0.23 veh (6')	1.00 veh (25')
Method 2: Synchro Queue (95th)	0.00 veh (0')	0.20 veh (5')
Method 3: SimTraffic Queue (95th)	29'	44'
2033 PM Peak Hour - LT Volume	6 vehicles	26 vehicles
Method 1: AASHTO Queue	0.20 veh (5')	0.87 veh (22')
Method 2: Synchro Queue (95th)	0.00 veh (0')	0.20 veh (5')
Method 3: SimTraffic Queue (95th)	22'	46'


2033 AM BUILD

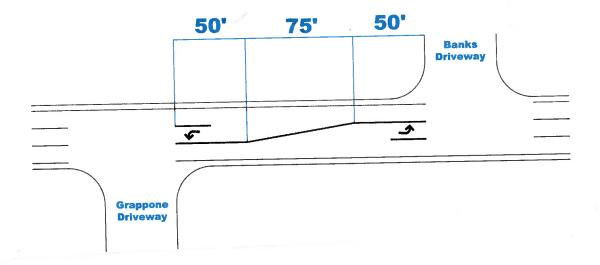

2033 PM BUILD

Figure 1

<u>Recommended Driveway Separation</u> - The following schematic diagram shows the recommended 175-foot separation between the site driveways, and one possible way for the future three-lane highway to be delineated.

ATTACHMENTS

				-		
Intersection						
Int Delay, s/veh	0.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\$		7	^	7	71
Traffic Vol, veh/h	1127	29	7	1130	10	3
Future Vol, veh/h	1127	29	7	1130	10	3
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	^	-	50	-	-	0
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	95	95	90	90
Heavy Vehicles, % Mvmt Flow	5 1252	0 32	0 7	5 1189	0 11	0 3
INIVIHE LIOM	1252	32	/	1109	11	3
	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1284	0	2471	1268
Stage 1	-	-	-	-	1268	-
Stage 2	-	-	4.4	-	1203	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1 Critical Hdwy Stg 2	-	-	-	-	5.4 5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	_	_	547	-	34	3.3 208
Stage 1	_	_	J 4 1	_	267	200
Stage 2	_	-	-	-	287	-
Platoon blocked, %	_		-	-	201	-
Mov Cap-1 Maneuver	_	_	547	_	34	208
Mov Cap-2 Maneuver	_	-	от <i>і</i> -		34	200
Stage 1	_	_	_	-	267	~
Stage 2	_	_	-	-	283	_
					_00	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1			
HCM LOS	U		U. I		125 F	
HOW LOS					Г	
Minor Lane/Major Mvmt	<u>t 1</u>	NBLn1 N		EBT	EBR	WBL \
Capacity (veh/h)		34	208	-	-	547
HCM Lane V/C Ratio		0.327		-	-	0.013
HCM Control Delay (s)		155.7	22.6	-	-	11.7
HCM Lane LOS		F	C	-	-	В
HCM 95th %tile Q(veh)		1.1	0	-	7(0

-					. 7	
Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	<u></u>	<u></u>		<u> </u>	7/
Traffic Vol, veh/h		1100		12		
Future Vol, veh/h	30	1100	1123	12	7	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	~	150
Veh in Median Storag	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	95	95	90	90
Heavy Vehicles, %	0	5	5	0	0	0
Mvmt Flow	33	1222	1182	13	8	16
Major/Minor	Major1		Major2	<u> </u>	Minor2	
Conflicting Flow All	1195	0	-	0	2477	1189
Stage 1	-	-	-	-	1189	-
Stage 2	-	-	-	-	1288	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	591	-	-	-	33	231
Stage 1	-	-	-	-	292	-
Stage 2	-	-	-	-	261	-
Platoon blocked, %	== :	-	-	-		
Mov Cap-1 Maneuver	591	-	-	-	31	231
Mov Cap-2 Maneuver	-	-	-	-	31	-
Stage 1	-	-	-	-	276	-
Stage 2	-	-	-	-	261	•
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		66.6	
HCM LOS					F	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WRR	SBLn1 SBL
Capacity (veh/h)	114	591		וטיי	*****	31 2
HCM Lane V/C Ratio		0.056	-	-	-	0.251 0.0
HCM Control Delay (s)		11.5	-	-		156.3 2°
HCM Lane LOS	į.	B	_	-	_	F
HCM 95th %tile Q(veh) (0.2	\ -	-	_	0.8 (
	,					

Intersection: 1: Proposed Site Driveway & Manchester Street

Movement	EB	WB	WB	NB	NB
Directions Served	TR	L	Т	L	R
Maximum Queue (ft)	16	36	16	57	28
Average Queue (ft)	1	7	0	12	4
95th Queue (ft)	10	29	8 (44	20
Link Distance (ft)	1178		109	1482	1482
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		50			
Storage Blk Time (%)		0	0		
Queuing Penalty (veh)		5	0		

Intersection: 2: Manchester Street & Banks Driveway

Movement	EΒ	EΒ	WB	SB	SB
Directions Served	L	Т	TR	L	R
Maximum Queue (ft)	49	16	2	45	43
Average Queue (ft)	17	. 1	0	10	12
95th Queue (ft)	44) 14	2	35	38
Link Distance (ft)		109	874	195	
Upstream Blk Time (%)		0			
Queuing Penalty (veh)		0			
Storage Bay Dist (ft)	50				150
Storage Blk Time (%)	1				
Queuing Penalty (veh)	8				

Network Summary

· · · · · · · · · · · · · · · · · · ·									
Intersection									
Int Delay, s/veh	8.8								
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	f)	-	3	/	_ ነ	_ 7	/		
Traffic Vol, veh/h	1261	22		1174	33				
Future Vol, veh/h	1261	22	6	1174	33	8	•		
Conflicting Peds, #/hr		0	Ö	0	0	0			
Sign Control	Free	Free	Free	Free	Stop	Stop			
RT Channelized	-	None	- 100	None	Otop -	None			
Storage Length	_	-	50	NOIIC		0			
Veh in Median Storage	e,# 0		50	0	<u>-</u>	U			
Grade, %		-	-		0	-			
	0	- 01	-	0	0	-			
Peak Hour Factor	91	91	90	90	90	90			
Heavy Vehicles, %	4	0	0	2	0	0			
Mvmt Flow	1386	24	7	1304	37	9			
Major/Minor	Major1		Majora		dinar1				
	Major1		Major2		Minor1	4000			
Conflicting Flow All	0	0	1410	0	2716	1398			
Stage 1	-	-	-	-	1398	-			
Stage 2	-	-		-	1318	-			
Critical Hdwy	-	-	4.1	-	6.4	6.2			
Critical Hdwy Stg 1	-	-	-	-	5.4	-			
Critical Hdwy Stg 2	-	-	-	-	5.4	-			
Follow-up Hdwy	-	-	2.2	-	3.5	3.3			
Pot Cap-1 Maneuver	-	-	490	-	~ 23	174			
Stage 1	-	-	-	-	231	-			
Stage 2	-	_	-	-	253	-			
Platoon blocked, %	_	-		-					
Mov Cap-1 Maneuver	_	_	490	_	~ 23	174			
Mov Cap-2 Maneuver	_	-	-	-	~ 23				
Stage 1	_	_	_	_	231	_			
Stage 2	_	_		_	249	-			
Olago 2	=	-	-	-	∠ +3	-			
Approach	ЕВ		WB		NB				
HCM Control Delay, s	0		0.1	Ф.	533.2				
HCM LOS	U		U. I	ф					
I IOIVI LOS					F				
Minor Lane/Major Mvm	nt N	IBLn1N	JRI n2	EBT	EBR	WBL	WBT		
Capacity (veh/h)		23	174			490	*****		
HCM Lane V/C Ratio				-	-		-		
			0.051	-	-	0.014	-		
HCM Control Delay (s)		\$ 656	26.8	-	-	12.4	-		
HCM Lane LOS		F	D	-	-	B) -		
HCM 95th %tile Q(veh))	4.7	0.2	-	- (<u>(0)</u>	-		
Notes									
~: Volume exceeds cap	pacity	\$: De	lay exce	eds 30	0s +	: Comp	outation Not Defined	*: All major volume in platoon	
·	•		•			,		• • • • • • • • • • • • • • • • • • • •	

						
Intersection	-					
Int Delay, s/veh	1.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	Ť	1	14	/	<u></u>	7
Traffic Vol, veh/h		1243	1163			17
Future Vol, veh/h	26	1243	1163	15	10	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length	. 50	-	-	-	0	0
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	- 04	0	0	-	0	-
Peak Hour Factor	91	91	90	90	90	90
Heavy Vehicles, %	0	4	4	0	0	0
Mvmt Flow	29	1366	1292	17	11	19
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	1309	0	_	0	2725	1301
Stage 1	-	-	-	-	1301	-
Stage 2	-	-	-	-	1424	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	535	-	-	-	23	199
Stage 1	-	-	-	-	258	-
Stage 2	-	-	-	-	224	-
Platoon blocked, %		•	-	-		
Mov Cap-1 Maneuver	535	-	-	-	22	199
Mov Cap-2 Maneuver	-	-	-	-	22	-
Stage 1	-	-	-	-	244	-
Stage 2	-	-	-	-	224	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		119.4	
HCM LOS			-		F	
Minor Lane/Major Mvm	.+	EBL	EDT	MDT	MDD C	ים אוםי
Capacity (veh/h)	IL		EBT	WBT	WERE	SBLn1 SBL
HCM Lane V/C Ratio		535	-	-	-	22 1
HCM Control Delay (s)		0.053 12.1	-	-	-	0.505 0.0
HCM Lane LOS		14.1	-	-	-	280 F
HCM 95th %tile Q(veh)		0.2	\ _	-	-	1.5 (
TOW COM TOMIC ON VOID	(0.2)	-	-	1.0

Intersection: 1: Proposed Site Driveway & Manchester Street

Movement	EB	WB	WB	NB	NB
Directions Served	TR	L	Т	L	R
Maximum Queue (ft)	6	33	38	262	36
Average Queue (ft)	0	4	3	141	8
95th Queue (ft)	4	22	20	326	30
Link Distance (ft)	1178		108	1482	1482
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		50			
Storage Blk Time (%)		0	0		
Queuing Penalty (veh)		0	0		

Movement	EB	EB	WB	SB	SB	
Directions Served	L	T	TR	L	R	
Maximum Queue (ft)	50	15	13	83	41	
Average Queue (ft)	18	1	1	25	13	
95th Queue (ft)	46	13	7	69	39	
Link Distance (ft)	-	108	824	132	132	
Upstream Blk Time (%)		0		0		
Queuing Penalty (veh)		0		0		
Storage Bay Dist (ft)	50					
Storage Blk Time (%)	1					
Queuing Penalty (veh)	13					

Network Summary

P.O. Box 1721 • Concord, NH 03302 tel: (603) 731-8500 • fax: (866) 929-6094 • sgp@ pernaw.com

751-0500 - Tax. (000) 725-0074 - sgp@ pcmaw.com

Transportation: Engineering • Planning • Design

MEMORANDUM

Ref: 2150A

To: Beth Fenstermacher, Assistant City Planner

City of Concord

From: Stephen G. Pernaw, P.E., PTOE

Subject: Grappone Mazda - Response to Engineering Services Transportation Review

Date: March 2, 2021

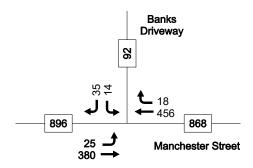
On February 17, 2022 the City issued a memorandum that provided comments regarding four documents from our office regarding the proposed automobile dealership at 134 Manchester Street. The purpose of this memorandum is to provide responses to all applicable comments. A portion of each comment is repeated or paraphrased below, for convenience:

<u>City Comment 5 – Overview – First Bullet:</u> "… the traffic study omitted the following: description of existing conditions of the roadway width, lane widths, signing, lighting, road conditions, and adjacent uses the driveway locations including those across the street from the proposed development site."

SGP & Co. Inc. Response: Page 3 of the "Traffic Impact Assessment" (TIA) contains a description of Manchester Street in general terms. The field survey and site plan by Nobis indicates that the travel lanes are approximately 12-feet in width. The overall roadway width is variable due to the shoulders in the immediate area (see Site Plan). Other than the posted speed limit signs mentioned in the TIA, there are no regulatory or warning signs in the vicinity of the subject site. Pole-mounted luminaires are present at various locations along the south side of the highway, including one along the site frontage. The pavement condition is fair, with longitudinal cracking noted in several areas. There are commercial driveways on both sides of the subject site and the Banks Chevrolet dealership driveway is located on the north side of Manchester Street. The centerline offset between the proposed Mazda driveway and the Banks driveway measures approximately 120-feet.

<u>City Comment 5 – Overview – Second Bullet:</u> "... a gap analysis may be helpful in documenting the number of sufficient gaps in the mainline traffic stream for vehicles to turn to and from the proposed development."

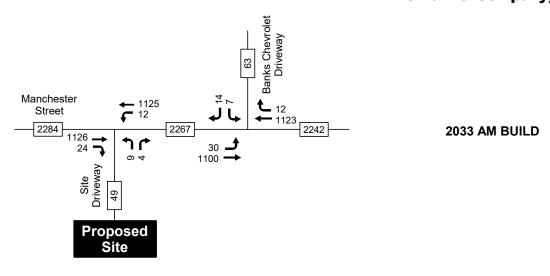
SGP & Co. Inc. Response: The gaps in the traffic stream on Manchester Street were measured using the October 14, 2021 count data for the highest 15-minute interval within the weekday PM peak hour. The left-turn departure movement from the proposed site driveway requires a simultaneous gap of sufficient length in both the eastbound and westbound traffic streams. The analysis is summarized on Attachments 1-8, and it demonstrates that the number of acceptable gaps exceeds the anticipated demand by a comfortable margin. The left-turn arrival movement into the subject site requires a gap of sufficient length in the eastbound traffic stream only. The analysis is summarized on Attachments 9-12; with similar findings.

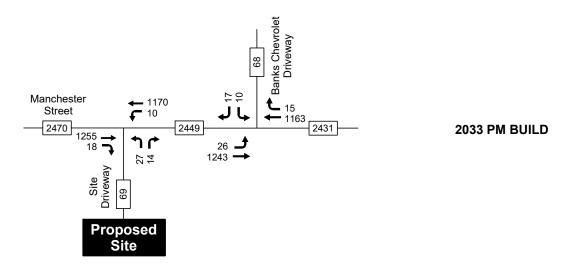

<u>City Comment 5 – Overview – Third Bullet:</u> "The applicant should provide a comparison of the available sight lines with AASHTO guidelines to determine if the available sight lines for a vehicle exiting the site meet or exceed the minimum requirements based on vehicle speeds on Manchester Street. In addition, the applicant should confirm that the required sightlines to not cross into abutting parcels in which a sight line easement would be needed."

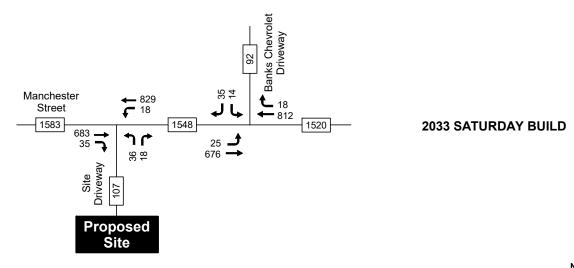
SGP & Co. Inc. Response: Attachment 13 depicts the line of sight looking left and right from the proposed site driveway approach to Manchester Street. The "eye" location for an exiting driver is set at 14.5-feet from the traveled way, and the "eye" location for approaching drivers set at 2.0-feet from the double-yellow centerline. The AASHTO guidelines call for 200-feet of stopping sight distance for 30 mph (posted speed limit) and 305-feet for a design speed of 40 mph. This graphic demonstrates that the required sightlines who do not encroach on abutting properties.

The following comments and responses pertain to the "Traffic Volumes and Projections" section of the city memorandum:

<u>City Comment 1:</u> "The applicant should either provide justification for why the impacts of the proposed development should not also be evaluated during the Saturday peak hour or provide an analysis of the traffic impacts of the project during the Saturday peak hour."


SGP & Co. Inc. Response: A supplemental traffic count was conducted at the Banks Chevrolet Driveway intersection on Saturday, February 26, 2022 from 10 AM to 2 PM. The detail sheets pertaining to this four-hour traffic count is attached (see Attachment 14). The Saturday midday peak hour occurred from 12:00 to 1:00 PM, and the following volumes were observed:




<u>City Comment 2:</u> "The applicant should obtain or collect Saturday daily traffic counts along Manchester Street in the vicinity of the site to confirm whether the traffic impacts of the proposed development should be evaluated on a Saturday basis..."

SGP & Co. Inc. Response: Supplemental 2033 Build Traffic Volumes have been prepared for the AM, PM and SAT peak hour periods and these are summarized on Figure 1. It should be noted that the traffic projections contained in the original TIA were based on an estimated 80% west / 20% east trip distribution split. Analysis of the traffic patterns observed at the Banks Chevrolet driveway revealed that the actual split is 66% west / 34% east. Consequently, the traffic volumes on Figure 1 reflect this new trip distribution pattern. These projections show that the proposed dealership will generate higher traffic levels during the Saturday midday peak hour (107 trips) than during the weekday AM (49 trips) and PM (69 trips) peak hour periods. Attachment 15 shows the updated distribution of site traffic for the three peak hour periods.

NORTH

<u>City Comment 3:</u> "The methodology used in developing the seasonal adjustment factor, shown in Appendix E of the traffic study, is reasonable."

SGP & Co. Inc. Response: No response required.

<u>City Comment 4:</u> "The methodology used in developing the pandemic adjustment factor, shown in Appendix E, is reasonable."

SGP & Co. Inc. Response: No response required.

City Comment 5: "Consistent with other comments in this memorandum, the applicant should provide justification that the Saturday peak hour should not be included within the study or conduct an analysis of the traffic impacts of the proposed development during the Saturday peak hour. In either case, it should be confirmed that the queuing analysis in the Driveway Separation Memorandum dated February 4, 2022 is valid for the critical time periods such that the Manchester Street eastbound and westbound left turn vehicles do not queue back beyond their striped storage, deceleration and taper areas."

SGP & Co. Inc. Response: As shown in Figure 1, the Saturday midday peak hour case is included herein. The updated "Vehicle Queuing Summary - 2033" is shown below:

VEHICLE QUEUING SUMMARY - 2033										
	WB Left-Turn Arrivals (Grappone)	EB Left-Turn Arrivals (Banks)								
2033 AM Peak Hour - LT Volume	12 vehicles	30 vehicles								
Method 1: AASHTO Queue	0.40 veh (10')	1.00 veh (25')								
Method 2: Synchro Queue (95th)	0.10 veh (3')	0.20 veh (5')								
Method 3: SimTraffic Queue (95th)	1.70 veh (34')	2.15 veh (43')								
2033 PM Peak Hour - LT Volume	10 vehicles	26 vehicles								
Method 1: AASHTO Queue	0.33 veh (8')	0.87 veh (22')								
Method 2: Synchro Queue (95th)	0.10 veh (3')	0.20 veh (5')								
Method 3: SimTraffic Queue (95th)	1.60 veh (32')	2.15 veh (43')								
2033 SAT Peak Hour - LT Volume	18 vehicles	25 vehicles								
Method 1: AASHTO Queue	0.60 veh (15')	0.83 veh (21')								
Method 2: Synchro Queue (95th)	0.10 veh (3')	0.10 veh (3')								
Method 3: SimTraffic Queue (95th)	1.60 veh (32')	1.95 veh (39')								

Attachments 16-24 contain the queue length computations. Attachments 25-26 summarize the westbound left-turn queue lengths observed in the field at the Banks driveway. In most instances, there were no vehicles waiting to turn left into the Banks site. The next most common instances (in descending order) were: 1) a "rolling" left-turn arrival that did not need to stop, 2) a one-vehicle queue, and least frequent: a two-vehicle queue (where it appears that two vehicles arrived together to drop-off one of the two vehicles).

<u>City Comment 6:</u> "If the distribution is updated, it should be confirmed that the queuing analysis in the Driveway Separation Memorandum dated February 4, 2022 is still valid."

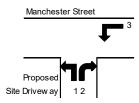
SGP & Co. Inc. Response: The new trip distribution pattern is reflected in the traffic volumes shown on Figure 1, and the "Vehicle Queuing Summary" shown above has been updated accordingly. Attachment 15 shows the updated distribution of site traffic based on the travel patterns observed at the Banks driveway.

<u>City Comment 7:</u> "The delay and queue length appear to have decreased in Addendum One for the NB LT Departures in the 2023 Build. The applicant should explain this change in operations."

SGP & Co. Inc. Response: Table 3-R in Addendum One inadvertently transposed the 2023 Build PM case with the 2033 Build AM case. To clarify, the original Table 3-R and corrected Table 3-R are shown together on Page 5. It should be noted that a third version of Table 3-R is necessary given that the trip distribution patterns have been updated in conjunction with this memorandum. Page 6 contains the latest edition of Table 3-R, and the computations are attached (see Attachments 16-18).

Table 3-R (Addendum One)	STOP-Controlled Intersection Capacity Analysis Manchester Street / Proposed Site Driveway										
		We	eekday Al	√l Peak H	our	w	Weekday PM Peak Hour				
		Delay 1	V/C 2	LOS3	Queue 4	Delay 1	V/C ²	LOS ³	Queue 4		
1. Proposed Site Drivew ay - NB LT Departures											
	2023 Build	75.3	0.18	F	1	161.8	0.34	F	1		
	2033 Build	211.3	0.80	F	3	>300*	1.67	F	5		
2. Proposed Site Drive	ew ay - NB RT Departures										
	2023 Build	18.2	0.01	С	<1	22.6	0.02	С	<1		
	2033 Build	20.3	0.04	С	<1	26.8	0.05	D	<1		
3. Manchester Street - WB LT-Turn Arrivals											
	2023 Build	10.5	0.01	В	<1	11.7	0.01	В	<1		
	2033 Build	11.0	0.01	В	<1	12.4	0.01	В	<1		

¹ HCM Control Delay (seconds per vehicle), ² HCM Volume to Capacity Ratio, ³ HCM Level of Service, ⁴ HCM 95th Percentile Queue (vehicles)


Table 3-R (Addendum One) Corrected

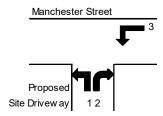
STOP-Controlled Intersection Capacity Analysis Manchester Street / Proposed Site Driveway

		We	ekday Al	√l Peak Ho	our	Weekday PM Peak Hour			
		Delay 1	V/C ²	LOS ³	Queue 4	Delay 1	V/C ²	LOS ³	Queue 4
1. Proposed Site Drive	w ay - NB LT Departures								
	2023 Build	75.3	0.18	F	1	211.3	0.80	F	3
	2033 Build	161.8	0.34	F	1	>300*	1.67	F	5
2. Proposed Site Drive	w ay - NB RT Departures								
	2023 Build	18.2	0.01	С	<1	20.3	0.04	С	<1
	2033 Build	22.6	0.02	С	<1	26.8	0.05	D	<1
3. Manchester Street	- WB LT-Turn Arrivals								
	2023 Build	10.5	0.01	В	<1	11.0	0.01	В	<1
	2033 Build	11.7	0.01	В	<1	12.4	0.01	В	<1

¹ HCM Control Delay (seconds per vehicle), ² HCM Volume to Capacity Ratio, ³ HCM Level of Service, ⁴ HCM 95th Percentile Queue (vehicles)

^{*}HCM 2010 Pg 19-28: "If demand exceeds capacity during a 15-minute period, the delay results computed by the procedures may not accurate

^{*}HCM 2010 Pg 19-28: "If demand exceeds capacity during a 15-minute period, the delay results computed by the procedures may not accurate"


Table 3-R (Response to Comments)

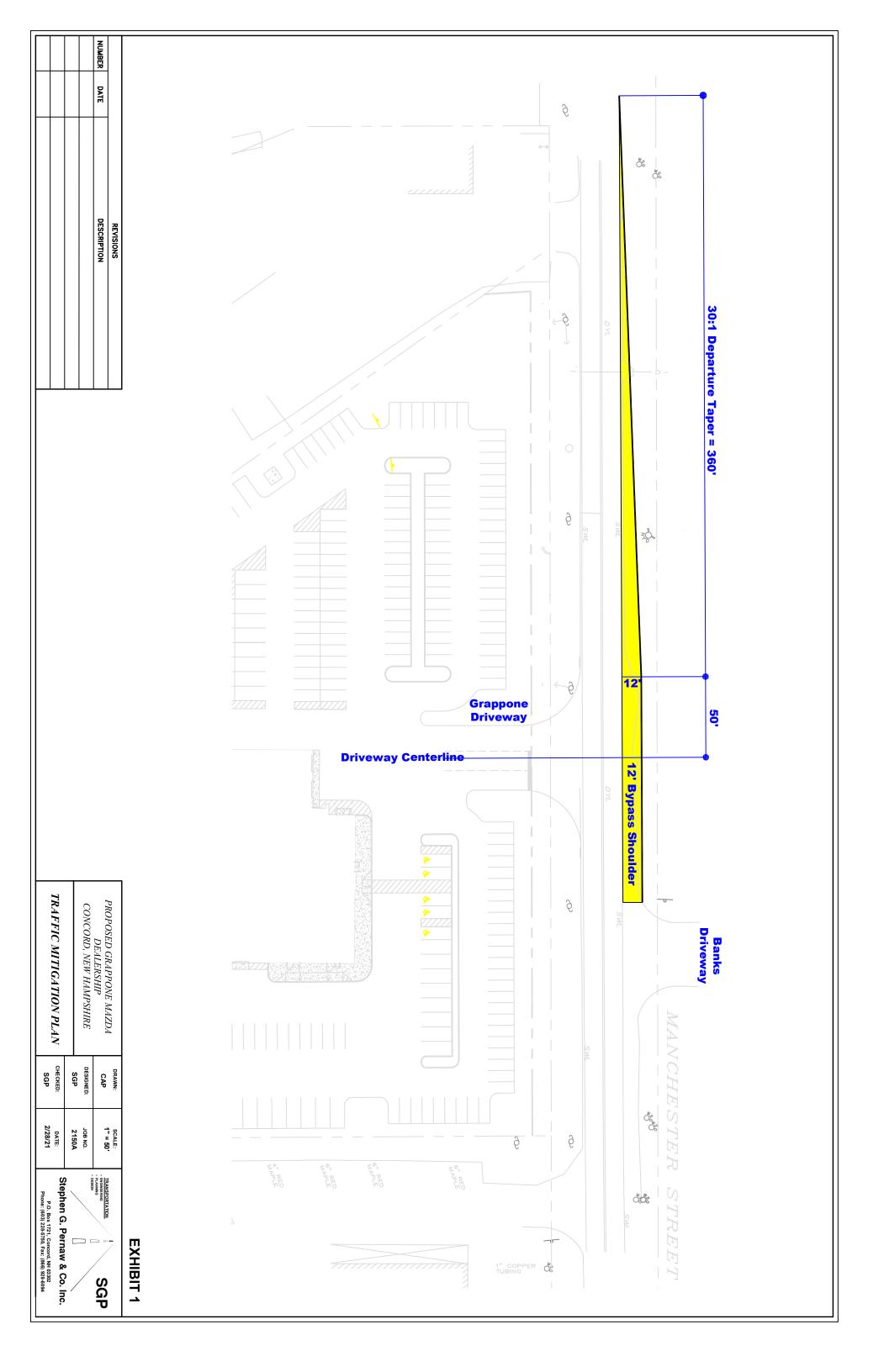
STOP-Controlled Intersection Capacity Analysis - 3/2/2022 Manchester Street / Proposed Site Driveway

		Weekday AM Peak Hour		Weekday PM Peak Hour			Saturday Peak Hour					
	<u>Delay</u>	1 V/C ²	LOS ³	Queue 4	Delay 1	V/C ²	LOS ³	Queue 4	Delay 1	V/C ²	LOS ³	Queue 4
1. Site Drivew ay - NB LT Departures												
2033	Build 162.2	2 0.31	F	1	>300*	1.30	F	4	59.0	0.38	F	2
2. Site Drivew ay - NB RT Dep	partures											
2033	Build 22.6	0.02	С	<1	27.4	0.09	D	<1	14.0	0.05	В	<1
3. Manchester St WB LT-1	urn Arrivals											
2033	Build 11.7	0.02	В	<1	12.4	0.02	В	<1	9.3	0.02	Α	<1

¹ HCM Control Delay (seconds per vehicle), ² HCM Volume to Capacity Ratio, ³ HCM Level of Service, ⁴ HCM 95th Percentile Queue (vehicles)

^{*}HCM 2010 Pg 19-28: "If demand exceeds capacity during a 15-minute period, the delay results computed by the procedures may not accurate"

The following comments and responses pertain to the "Site Access and On-Site Circulation" section of the city memorandum:

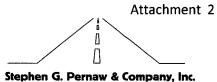

<u>City Comment 1:</u> "The elimination of one additional existing driveway opening on Manchester Street is a positive improvement for access management along the Manchester Street corridor."

SGP & Co. Inc. Response: We concur.

City Comment 1: "Ideally, the proposed driveway would be aligned across from the opposite (Banks) driveway to form a standard four-way intersection, or with a positive offset such that the mainline or driveway left turns would not conflict. If either of these site driveway designs cannot be accomplished, the applicant shall present a solution, for review and approval by the City's Traffic Engineer and Planning Board, to address the need for left turn treatment for the 2023 opening year and 2033 horizon year, to mitigate the projects impacts to Manchester Street and neighboring driveways."

SGP & Co. Inc. Response: According to city staff communications with the Applicant, the relocation of the site driveway (175' from Banks driveway) is a city **suggestion** and not a requirement. Based on this input from the city, and the Applicant's desire to keep the proposed site driveway in its original position, our office recommends that the existing shoulder on the north side of Manchester Street be widened to 12-feet in width to function as a "bypass" shoulder, as shown on Exhibit 1.

CC: J. Chris Nadeau, P.E., Nobis Amanda Osmer, Grappone Mazda

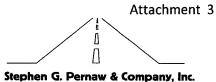


ATTACHMENTS

Traffic Tracker

Environment Data File \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Environment 1.tdp \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv

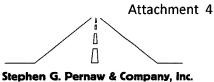
Detector		Time		Gap Size	Gap <u>≥</u> 7.1
m	EB Arrival Time =	0.6771084		·	
m	EB Arrival Time =	0.6771241	1.56883E-05	1.4	0
m	EB Arrival Time =	0.6771458	2.17466E-05	1.9	0
z	WB Arrival Time =	0.6771658	1.99382E-05	1.7	0
m	EB Arrival Time =	0.6771713	5.51577E-06	0.5	Ō
m	EB Arrival Time =	0.6771861	1.48745E-05	1.3	0
z	WB Arrival Time =	0.6772047	1.85366E-05	1.6	0
m	EB Arrival Time =	0.6772095	4.79239E-06	0.4	Ö
z	WB Arrival Time =	0.6772282	1.87627E-05	1.6	Ö
m	EB Arrival Time =	0.6772469	1.86722E-05	1.6	0
z	WB Arrival Time =	0.6772677	2.08424E-05	1.8	Ō
m	EB Arrival Time =	0.6772840	1.62308E-05	1.4	0
m	EB Arrival Time =	0.6773229	3.88817E-05	3.4	0
m	EB Arrival Time =	0.6773451	2.22439E-05	1.9	0
z	WB Arrival Time =	0.6773502	5.06366E-06	0.4	0
z	WB Arrival Time =	0.6773893	3.91529E-05	3.4	0
m	EB Arrival Time =	0.6773977	8.40929E-06	0.7	0
m	EB Arrival Time =	0.6774240	2.62225E-05	2.3	0
m	EB Arrival Time =	0.6774535	2.95229E-05	2.6	0
m	EB Arrival Time =	0.6774692	1.57335E-05	1.4	0
m	EB Arrival Time =	0.6774873	1.80845E-05	1.6	0
m	EB Arrival Time =	0.6775862	9.89222E-05	8.5	1
m	EB Arrival Time =	0.6776837	9.74754E-05	8.4	1
m	EB Arrival Time =	0.6777667	8.3053E-05	7.2	1
z	WB Arrival Time =	0.6777725	5.78704E-06	0.5	0
m	EB Arrival Time =	0.6777949	2.23343E-05	1.9	0
z	WB Arrival Time =	0.6778059	1.09863E-05	0.9	0
z	WB Arrival Time =	0.6778843	7.83963E-05	6.8	0
z	WB Arrival Time =	0.6778972	1.29756E-05	1.1	0
z	WB Arrival Time =	0.6779226	2.53635E-05	2.2	0
z	WB Arrival Time =	0.6779557	3.31398E-05	2.9	0
z	WB Arrival Time =	0.6779733	1.7542E-05	1.5	0
z	WB Arrival Time =	0.6780075	3.42701E-05	3.0	0
m	EB Arrival Time =	0.6781126	0.000105026	9.1	1
m	EB Arrival Time =	0.6781568	4.42618E-05	3.8	0
m	EB Arrival Time =	0.6781649	8.0476E-06	0.7	0
z	WB Arrival Time =	0.6781793	1.44224E-05	1.2	0
m	EB Arrival Time =	0.6781960	1.66829E-05	1.4	0
z	WB Arrival Time =	0.6781989	2.89352E-06	0.3	0
m	EB Arrival Time =	0.6782062	7.27901E-06	0.6	0
z	WB Arrival Time =	0.6782345	2.83927E-05	2.5	-
m	EB Arrival Time =	0.6782465	1.19358E-05	1.0	0
z	WB Arrival Time =	0.6782585	1.1981E-05	1.0	0
m	EB Arrival Time =	0.6782791	2.06615E-05	1.8	
z	WB Arrival Time =	0.6782982	1.90791E-05	1.6	0
m	EB Arrival Time =	0.6783190	2.0752E-05	1.8	0
z	WB Arrival Time =	0.6783348	1.58239E-05	1.4	0
m	EB Arrival Time =	0.6783443	9.53957E-06	0.8	0
z	WB Arrival Time =	0.6783542	9.85605E-06	0.8	
m	EB Arrival Time =	0.6783747	2.05711E-05	1.8	0 0
111	LD/Milvai Timic -	0.0100141	2.007 TTE-00	1.0	U



Traffic Tracker Environment

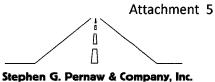
Data File

\\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Enviroment 1.tdp \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv


Detector		Time		Gap Size	Gap <u>></u> 7.1
z	WB Arrival Time =	0.6783916	1.68186E-05	1.5	0
m	EB Arrival Time =	0.6784096	1.80845E-05	1.6	0
z	WB Arrival Time =	0.6784180	8.36408E-06	0.7	0
z	WB Arrival Time =	0.6784400	2.19727E-05	1.9	0
m	EB Arrival Time =	0.6784433	3.34563E-06	0.3	0
z	WB Arrival Time =	0.6784693	2.59512E-05	2.2	0
m	EB Arrival Time =	0.6784728	3.48126E-06	0.3	0
m	EB Arrival Time =	0.6784790	6.28436E-06	0.5	0
z	WB Arrival Time =	0.6785165	3.74349E-05	3.2	0
z	WB Arrival Time =	0.6785512	3.47222E-05	3.0	0
z	WB Arrival Time =	0.6785737	2.25152E-05	1.9	0
m	EB Arrival Time =	0.6785764	2.71267E-06	0.2	0
z	WB Arrival Time =	0.6786055	2.90708E-05	2.5	0
m	EB Arrival Time =	0.6786129	7.41464E-06	0.6	0
m	EB Arrival Time =	0.6786516	3.87008E-05	3.3	0
z	WB Arrival Time =	0.6786656	1.39703E-05	1.2	0
m	EB Arrival Time =	0.6787434	7.77633E-05	6.7	0
m	EB Arrival Time =	0.6787869	4.35836E-05	3.8	0
m	EB Arrival Time =	0.6788157	2.87996E-05	2.5	0
m	EB Arrival Time =	0.6788497	3.39536E-05	2.9	0
m	EB Arrival Time =	0.6789004	5.06818E-05	4.4	0
z	WB Arrival Time =	0.6789713	7.09364E-05	6.1	0
m	EB Arrival Time =	0.6791198	0.000148519	12.8	1
m	EB Arrival Time =	0.6791742	5.43439E-05	4.7	0
m	EB Arrival Time =	0.6792372	6.30697E-05	5.4	0
m	EB Arrival Time =	0.6792646	2.73528E-05	2.4	0
m	EB Arrival Time =	0.6792858	2.12493E-05	1.8	0
m	EB Arrival Time =	0.6793102	2.43689E-05	2.1	0
z	WB Arrival Time =	0.6793287	1.84462E-05	1.6	0
m	EB Arrival Time =	0.6793369	8.27365E-06	0.7	0
m	EB Arrival Time =	0.6794247	8.78002E-05	7.6	1
m	EB Arrival Time =	0.6794543	2.95681E-05	2.6	o O
z	WB Arrival Time =	0.6794625	8.18323E-06	0.7	0
m	EB Arrival Time =	0.6795101	4.76526E-05	4 .1	0
m	EB Arrival Time =	0.6795321	2.19727E-05	1.9	ō
z	WB Arrival Time =	0.6795580	2.58608E-05	2.2	Ö
m	EB Arrival Time =	0.6795613	3.30042E-06	0.3	Ō
z	WB Arrival Time =	0.6795927	3.14218E-05	2.7	0
m	EB Arrival Time =	0.6796025	9.76562E-06	0.8	Ō
z	WB Arrival Time =	0.6796195	1.69994E-05	1.5	0
m	EB Arrival Time =	0.6796299	1.0489E-05	0.9	0
z	WB Arrival Time =	0.6796731	4.31315E-05	3.7	0
m	EB Arrival Time =	0.6796843	1.12124E-05	1.0	0
z	WB Arrival Time =	0.6797006	1.63213E-05	1.4	0
z	WB Arrival Time =	0.6797366	3.59881E-05	3.1	0
z	WB Arrival Time =	0.6797592	2.25604E-05	1.9	0
m	EB Arrival Time =	0.6797729	1.3699E-05	1.2	0
z	WB Arrival Time =	0.6797876	1.46936E-05	1.3	0
z	WB Arrival Time =	0.6798193	3.17383E-05	2.7	Ö
z	WB Arrival Time =	0.6798541	3.48126E-05	3.0	0

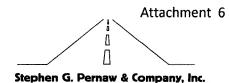
Traffic Tracker

Environment \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Enviroment 1.tdp Data File \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv


Detector		Time		Gap Size	Gap <u>≥</u> 7.1
z	WB Arrival Time =	0.6798689	1.47841E-05	1.3	0
m	EB Arrival Time =	0.6798742	5.33492E-06	0.5	0
z	WB Arrival Time =	0.6798992	2.50018E-05	2.2	0
z	WB Arrival Time =	0.6799434	4.42166E-05	3.8	0
m	EB Arrival Time =	0.6799508	7.36943E-06	0.6	0
z	WB Arrival Time =	0.6799669	1.60952E-05	1.4	0
z	WB Arrival Time =	0.6799863	1.94408E-05	1.7	0
m	EB Arrival Time =	0.6799909	4.56633E-06	0.4	0
z	WB Arrival Time =	0.6800128	2.18822E-05	1.9	0
z	WB Arrival Time =	0.6800453	3.24617E-05	2.8	0
z	WB Arrival Time =	0.6800602	1.49197E-05	1.3	0
m	EB Arrival Time =	0.6800662	6.01309E-06	0.5	0
z	WB Arrival Time =	0.6801092	4.30411E-05	3.7	0
z	WB Arrival Time =	0.6801433	3.40441E-05	2.9	0
z	WB Arrival Time =	0.6801740	3.07436E-05	2.7	0
m	EB Arrival Time =	0.6802150	4.10066E-05	3.5	0
z	WB Arrival Time =	0.6802289	1.38798E-05	1.2	0
z	WB Arrival Time =	0.6802641	3.51743E-05	3.0	0
m	EB Arrival Time =	0.6802757	1.16645E-05	1.0	0
z	WB Arrival Time =	0.6802916	1.58239E-05	1.4	0
m	EB Arrival Time =	0.6803095	1.79489E-05	1.6	0
m	EB Arrival Time =	0.6803426	3.30494E-05	2.9	0
z	WB Arrival Time =	0.6803652	2.26056E-05	2.0	0
m	EB Arrival Time =	0.6803849	1.97573E-05	1.7	0
z	WB Arrival Time =	0.6804215	3.65307E-05	3.2	0
m	EB Arrival Time =	0.6804352	1.37442E-05	1.2	0
z	WB Arrival Time =	0.6804517	1.65021E-05	1.4	0
m	EB Arrival Time =	0.6804596	7.86675E-06	0.7	0
z	WB Arrival Time =	0.6805075	4.78787E-05	4.1	0
z	WB Arrival Time =	0.6805511	4.36288E-05	3.8	0
z	WB Arrival Time =	0.6805992	4.815E-05	4.2	0
z	WB Arrival Time =	0.6806316	3.24164E-05	2.8	0
z	WB Arrival Time =	0.6806542	2.25604E-05	1.9	0
z	WB Arrival Time =	0.6807052	5.10435E-05	4.4	0
m	EB Arrival Time =	0.6807084	3.11957E-06	0.3	0
z	WB Arrival Time =	0.6807447	3.63046E-05	3.1	0
m	EB Arrival Time =	0.6807551	1.04438E-05	0.9	0
z	WB Arrival Time =	0.6807694	1.4332E-05	1.2	0
m	EB Arrival Time =	0.6807766	7.14337E-06	0.6	0
z	WB Arrival Time =	0.6808039	2.73076E-05	2.4	0
z	WB Arrival Time =	0.6808238	1.98929E-05	1.7	0
m	EB Arrival Time =	0.6808482	2.43689E-05	2.1	0
z	WB Arrival Time =	0.6808866	3.84295E-05	3.3	0
z	WB Arrival Time =	0.6809066	1.99834E-05	1.7	0
m	EB Arrival Time =	0.6809109	4.34028E-06	0.4	0
z	WB Arrival Time =	0.6809290	1.80845E-05	1.6	0
z	WB Arrival Time =	0.6809543	2.52731E-05	2.2	0
z	WB Arrival Time =	0.6809860	3.17383E-05	2.7	0
z	WB Arrival Time =	0.6810140	2.79857E-05	2.4	0
z	WB Arrival Time =	0.6810418	2.77597E-05	2.4	0

Traffic Tracker

Environment \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Environment 1.tdp Data File \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv


Detector		Time		Gap Size	Gap <u>≥</u> 7.1
z	WB Arrival Time =	0.6810840	4.22725E-05	3.7	0
z	WB Arrival Time =	0.6811061	2.20631E-05	1.9	0
m	EB Arrival Time =	0.6811158	9.6752E-06	0.8	0
z	WB Arrival Time =	0.6811302	1.44224E-05	1.2	0
m	EB Arrival Time =	0.6811339	3.66211E-06	0.3	0
m	EB Arrival Time =	0.6811577	2.38263E-05	2.1	0
z	WB Arrival Time =	0.6811721	1.44224E-05	1.2	0
m	EB Arrival Time =	0.6811864	1.4332E-05	1.2	0
z	WB Arrival Time =	0.6812028	1.63213E-05	1.4	0
m	EB Arrival Time =	0.6812111	8.31887E-06	0.7	0
z	WB Arrival Time =	0.6812397	2.86187E-05	2.5	0
m	EB Arrival Time =	0.6812961	5.63784E-05	4.9	0
m	EB Arrival Time =	0.6813306	3.44962E-05	3.0	0
z	WB Arrival Time =	0.6813794	4.88733E-05	4.2	0
z	WB Arrival Time =	0.6813999	2.04807E-05	1.8	0
m	EB Arrival Time =	0.6814190	1.90791E-05	1.6	0
z	WB Arrival Time =	0.6814258	6.8269E-06	0.6	0
z	WB Arrival Time =	0.6814669	4.10518E-05	3.5	0
z	WB Arrival Time =	0.6814855	1.85818E-05	1.6	0
z	WB Arrival Time =	0.6815274	4.19108E-05	3.6	0
z	WB Arrival Time =	0.6815771	4.96871E-05	4.3	0
z	WB Arrival Time =	0.6816004	2.33742E-05	2.0	0
z	WB Arrival Time =	0.6816443	4.38549E-05	3.8	0
z	WB Arrival Time =	0.6816694	2.50922E-05	2.2	0
z	WB Arrival Time =	0.6816862	1.67734E-05	1.4	0
z	WB Arrival Time =	0.6817069	2.07972E-05	1.8	0
z	WB Arrival Time =	0.6818834	0.000176459	15.2	1
m	EB Arrival Time =	0.6819584	7.50054E-05	6.5	0
m	EB Arrival Time =	0.6819805	2.21083E-05	1.9	0
m	EB Arrival Time =	0.6820022	2.16562E-05	1.9	0
Z	WB Arrival Time =	0.6820764	7.41916E-05	6.4	0
z	WB Arrival Time =	0.6820986	2.22439E-05	1.9	0
z	WB Arrival Time =	0.6821260	2.7398E-05	2.4	0
z	WB Arrival Time =	0.6821461	2.0119E-05	1.7	0
m	EB Arrival Time =	0.6821520	5.83225E-06	0.5	0
z	WB Arrival Time =	0.6821764	2.44141E-05	2.1	0
z	WB Arrival Time =	0.6822469	7.05295E-05	6.1	0
z	WB Arrival Time =	0.6822628	1.59144E-05	1.4	0
z	WB Arrival Time =	0.6822816	1.87627E-05	1.6	0
z	WB Arrival Time =	0.6823021	2.04807E-05	1.8	0
z	WB Arrival Time =	0.6823207	1.86722E-05	1.6	0
z	WB Arrival Time =	0.6823459	2.51374E-05	2.2	0
z	WB Arrival Time =	0.6823762	3.02915E-05	2.6	0
m	EB Arrival Time =	0.6823805	4.34028E-06	0.4	0
z	WB Arrival Time =	0.6824110	3.04724E-05	2.6	0
m	EB Arrival Time =	0.6824259	1.49649E-05	1.3	0
z	WB Arrival Time =	0.6824410	1.50101E-05	1.3	0
m	EB Arrival Time =	0.6824491	8.13802E-06	0.7	0
z	WB Arrival Time =	0.6824711	2.19727E-05	1.9	0
m	EB Arrival Time =	0.6824759	4.88281E-06	0.4	0

Traffic Tracker

Environment \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Environment 1.tdp Data File \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv

Detector		Time		Gap Size	Gap <u>≥</u> 7.1
m	EB Arrival Time =	0.6825126	3.66663E-05	3.2	0
z	WB Arrival Time =	0.6825401	2.75336E-05	2.4	0
m	EB Arrival Time =	0.6825443	4.15943E-06	0.4	0
z	WB Arrival Time =	0.6825766	3.22808E-05	2.8	0
m	EB Arrival Time =	0.6825810	4.38549E-06	0.4	0
z	WB Arrival Time =	0.6826034	2.24248E-05	1.9	0
z	WB Arrival Time =	0.6826329	2.95229E-05	2.6	0
m	EB Arrival Time =	0.6826370	4.11422E-06	0.4	Ō
z	WB Arrival Time =	0.6826708	3.37728E-05	2.9	Ō
m	EB Arrival Time =	0.6827027	3.18739E-05	2.8	0
m	EB Arrival Time =	0.6827374	3.4677E-05	3.0	0
z	WB Arrival Time =	0.6827376	2.26056E-07	0.0	0
m	EB Arrival Time =	0.6827555	1.79036E-05	1.5	0
m	EB Arrival Time =	0.6827876	3.21452E-05	2.8	0
m	EB Arrival Time =	0.6828226	3.49935E-05	3.0	0
m	EB Arrival Time =	0.6828829	6.02666E-05	5.2	Ö
m	EB Arrival Time =	0.6829271	4.41714E-05	3.8	0
z	WB Arrival Time =	0.6829782	5.11339E-05	4.4	0
z	WB Arrival Time =	0.6829958	1.75872E-05	1.5	0
z	WB Arrival Time =	0.6830903	9.44915E-05	8.2	1
z	WB Arrival Time =	0.6831330	4.26794E-05	3.7	Ö
z	WB Arrival Time =	0.6831569	2.3962E-05	2.1	0
z	WB Arrival Time =	0.6831769	1.99834E-05	1.7	0
z	WB Arrival Time =	0.6832058	2.889E-05	2.5	0
z	WB Arrival Time =	0.6832337	2.79405E-05	2.4	0
z	WB Arrival Time =	0.6832650	3.1241E-05	2.7	0
z	WB Arrival Time =	0.6832834	1.84462E-05	1.6	0
z	WB Arrival Time =	0.6833076	2.41428E-05	2.1	0
z	WB Arrival Time =	0.6833448	3.72088E-05	3.2	0
m	EB Arrival Time =	0.6833710	2.62677E-05	2.3	0
z	WB Arrival Time =	0.6833969	2.58608E-05	2.2	0
m	EB Arrival Time =	0.6834156	1.86722E-05	1.6	0
z	WB Arrival Time =	0.6834247	9.08746E-06	0.8	0
z	WB Arrival Time =	0.6834388	1.41511E-05	1.2	0
m	EB Arrival Time =	0.6834445	5.6514E-06	0.5	0
m	EB Arrival Time =	0.6834699	2.54539E-05	2.2	0
m	EB Arrival Time =	0.6834875	1.7542E-05	1.5	0
m	EB Arrival Time =	0.6835069	1.93956E-05	1.7	0
z	WB Arrival Time =	0.6835286	2.17466E-05	1.9	0
m	EB Arrival Time =	0.6835316	3.02915E-06	0.3	0
m	EB Arrival Time =	0.6835542	2.26056E-05	2.0	0
z	WB Arrival Time =	0.6835630	8.72577E-06	0.8	0
m	EB Arrival Time =	0.6835794	1.64117E-05	1.4	0
m	EB Arrival Time =	0.6836032	2.38715E-05	2.1	0
m	EB Arrival Time =	0.6836395	3.62142E-05	3.1	0
m	EB Arrival Time =	0.6836704	3.09245E-05	2.7	0
m	EB Arrival Time =	0.6836948	2.44141E-05	2.1	0
m	EB Arrival Time =	0.6837156	2.07972E-05	1.8	Ō
m	EB Arrival Time =	0.6837459	3.03367E-05	2.6	0
m	EB Arrival Time =	0.6837648	1.88531E-05	1.6	0
					-

Traffic Tracker Environment

\\STEVE-PC\\Network\\Projects\2150A\\Traffic Tracker\\Environment 1.tdp

Data File \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv Movement: Left-turn departure movement from Grappone driveway (Critical headway = 7.1 seconds)

	·		, (,	,
Detector		Time		Gap Size	Gap <u>≥</u> 7.1
m	EB Arrival Time =	0.6837835	1.87627E-05	1.6	0
z	WB Arrival Time =	0.6839208	0.000137216	11.9	1
m	EB Arrival Time =	0.6839635	4.27246E-05	3.7	0
m	EB Arrival Time =	0.6839839	2.03903E-05	1.8	0
m	EB Arrival Time =	0.6840107	2.68555E-05	2.3	0
m	EB Arrival Time =	0.6840583	4.75622E-05	4.1	0
z	WB Arrival Time =	0.6840682	9.90126E-06	0.9	0
m	EB Arrival Time =	0.6840711	2.89352E-06	0.3	0
m	EB Arrival Time =	0.6840957	2.46401E-05	2.1	0
z	WB Arrival Time =	0.6841156	1.98477E-05	1.7	0
m	EB Arrival Time =	0.6841286	1.3066E-05	1.1	0
m	EB Arrival Time =	0.6841540	2.53183E-05	2.2	0
m	EB Arrival Time =	0.6841993	4.53016E-05	3.9	0
m	EB Arrival Time =	0.6842235	2.42332E-05	2.1	0
m	EB Arrival Time =	0.6842470	2.35098E-05	2.0	0
m	EB Arrival Time =	0.6842765	2.94777E-05	2.5	0
m	EB Arrival Time =	0.6842976	2.10684E-05	1.8	0
z	WB Arrival Time =	0.6843251	2.75788E-05	2.4	0
m	EB Arrival Time =	0.6843295	4.34028E-06	0.4	0
m	EB Arrival Time =	0.6843548	2.53635E-05	2.2	0
z	WB Arrival Time =	0.6843688	1.39703E-05	1.2	0
z	WB Arrival Time =	0.6843872	1.8401E-05	1.6	0
m	EB Arrival Time =	0.6844146	2.73528E-05	2.4	0
m	EB Arrival Time =	0.6844477	3.31398E-05	2.9	0
z	WB Arrival Time =	0.6844593	1.16193E-05	1.0	0
m	EB Arrival Time =	0.6844752	1.59144E-05	1.4	0
m	EB Arrival Time =	0.6844933	1.80393E-05	1.6	0
z	WB Arrival Time =	0.6844984	5.10887E-06	0.4	0
m	EB Arrival Time =	0.6845294	3.09697E-05	2.7	0
m	EB Arrival Time =	0.6845626	3.32303E-05	2.9	0
m	EB Arrival Time =	0.6845886	2.60417E-05	2.3	0
m	EB Arrival Time =	0.6846108	2.21535E-05	1.9	0
m	EB Arrival Time =	0.6846477	3.69376E-05	3.2	0
z	WB Arrival Time =	0.6847036	5.59263E-05	4.8	0
z	WB Arrival Time =	0.6847383	3.46318E-05	3.0	0
m	EB Arrival Time =	0.6847646	2.63581E-05	2.3	0
m	EB Arrival Time =	0.6848174	5.28067E-05	4.6	0
z	WB Arrival Time =	0.6848178	4.06901E-07	0.0	0
m	EB Arrival Time =	0.6848374	1.95313E-05	1.7	0
z	WB Arrival Time =	0.6848541	1.67734E-05	1.4	0
z	WB Arrival Time =	0.6848900	3.58073E-05	3.1	0
z	WB Arrival Time =	0.6849089	1.89435E-05	1.6	0
z	WB Arrival Time =	0.6849316	2.26508E-05	2.0	0
z	WB Arrival Time =	0.6849624	3.08793E-05	2.7	0
m	EB Arrival Time =	0.6849681	5.6514E-06	0.5	0
z	WB Arrival Time =	0.6849954	2.73528E-05	2.4	0
m	EB Arrival Time =	0.6850158	2.03451E-05	1.8	0
z	WB Arrival Time =	0.6850227	6.87211E-06	0.6	0
z	WB Arrival Time =	0.6850381	1.5417E-05	1.3	0
m	EB Arrival Time =	0.6850428	4.70197E-06	0.4	0

Traffic Tracker Environment

Data File

\\STEVE-PC\\Network\\Projects\\2150A\\Traffic Tracker\\Enviroment 1.tdp \\STEVE-PC\\Network\\Projects\\2150A\\Traffic Tracker\\Interval 415 430.csv

Detector		Time		Gap Size	Gap ≥7.1
z	WB Arrival Time =	0.6850636	2.08424E-05	1.8	0
m	EB Arrival Time =	0.6850671	3.48126E-06	0.3	0
z	WB Arrival Time =	0.6850976	3.05176E-05	2.6	0
m	EB Arrival Time =	0.6851330	3.54004E-05	3.1	0
z	WB Arrival Time =	0.6851421	9.08746E-06	0.8	0
m	EB Arrival Time =	0.6851860	4.39001E-05	3.8	0
z	WB Arrival Time =	0.6852100	2.40072E-05	2.1	0
z	WB Arrival Time =	0.6852367	2.67198E-05	2.3	0
z	WB Arrival Time =	0.6852719	3.51291E-05	3.0	0
z	WB Arrival Time =	0.6852965	2.46853E-05	2.1	0
z	WB Arrival Time =	0.6853229	2.63129E-05	2.3	0
m	EB Arrival Time =	0.6854725	0.000149649	12.9	1
z	WB Arrival Time =	0.6854794	6.87211E-06	0.6	0
m	EB Arrival Time =	0.6854933	1.39251E-05	1.2	0
z	WB Arrival Time =	0.6855131	1.98025E-05	1.7	0
m	EB Arrival Time =	0.6855339	2.0752E-05	1.8	0
m	EB Arrival Time =	0.6855496	1.57335E-05	1.4	0
z	WB Arrival Time =	0.6855548	5.2445E-06	0.5	0
z	WB Arrival Time =	0.6855849	3.01107E-05	2.6	0
m	EB Arrival Time =	0.6856072	2.22891E-05	1.9	0
z	WB Arrival Time =	0.6856156	8.36408E-06	0.7	0
z	WB Arrival Time =	0.6856733	5.77347E-05	5.0	0
m	EB Arrival Time =	0.6856908	1.74967E-05	1.5	0
z	WB Arrival Time =	0.6856997	8.8614E-06	0.8	0
m	EB Arrival Time =	0.6857032	3.48126E-06	0.3	0
Z	WB Arrival Time =	0.6857278	2.46401E-05	2.1	0
m	EB Arrival Time =	0.6857324	4.56633E-06	0.4	0
m	EB Arrival Time =	0.6857459	1.35634E-05	1.2	0
z	WB Arrival Time =	0.6857556	9.62999E-06	0.8	0
z	WB Arrival Time =	0.6857762	2.06615E-05	1.8	0
m	EB Arrival Time =	0.6857862	9.94647E-06	0.9	0
Z	WB Arrival Time =	0.6858015	1.53718E-05	1.3	0
m	EB Arrival Time =	0.6858075	5.92267E-06	0.5	0
z	WB Arrival Time =	0.6858270	1.95312E-05	1.7	0
m	EB Arrival Time =	0.6858341	7.09816E-06	0.6	0
Z	WB Arrival Time = EB Arrival Time =	0.6858472 0.6858724	1.31113E-05	1.1	0
m -	WB Arrival Time =		2.52279E-05 8.99703E-06	2.2	0
z z	WB Arrival Time =	0.6858814 0.6859727	9.12815E-05	0.8	0
z	WB Arrival Time =	0.6859976	2.48662E-05	7.9 2.1	1 0
m	EB Arrival Time =	0.6860069	9.31351E-06	0.8	0
z	WB Arrival Time =	0.6860451	3.82487E-05	3.3	0
z	WB Arrival Time =	0.6860746	2.94777E-05	2.5	0
z	WB Arrival Time =	0.6861008	2.62225E-05	2.3	0
z	WB Arrival Time =	0.6862789	0.000178042	15.4	1
z	WB Arrival Time =	0.6863378	5.89102E-05	5.1	Ó
z	WB Arrival Time =	0.6863593	2.15205E-05	1.9	0
m	EB Arrival Time =	0.6863869	2.76241E-05	2.4	0
m	EB Arrival Time =	0.6864374	5.04557E-05	4.4	0
m	EB Arrival Time =	0.6864516	1.41963E-05	1.2	0

Traffic Tracker

Environment \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Environment 1.tdp

Data File \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv

Movement: Left-turn departure movement from Grappone driveway (Critical headway = 7.1 seconds)

Detector		Time		Gap Size	Gap <u>≥</u> 7.1
m	EB Arrival Time =	0.6864877	3.61238E-05	3.1	0
m	EB Arrival Time =	0.6865233	3.5536E-05	3.1	0
m	EB Arrival Time =	0.6865525	2.92517E-05	2.5	0
m	EB Arrival Time =	0.6866106	5.80964E-05	5.0	0
m	EB Arrival Time =	0.6866571	4.64771E-05	4.0	0
z	WB Arrival Time =	0.6866808	2.36907E-05	2.0	0
z	WB Arrival Time =	0.6866941	1.33373E-05	1.2	0
m	EB Arrival Time =	0.6867049	1.07603E-05	0.9	0
z	WB Arrival Time =	0.6867203	1.5417E-05	1.3	0
m	EB Arrival Time =	0.6867294	9.08746E-06	0.8	0
z	WB Arrival Time =	0.6867524	2.30125E-05	2.0	0
m	EB Arrival Time =	0.6868508	9.83796E-05	8.5	1
z	WB Arrival Time =	0.6869254	7.45985E-05	6.4	0
z	WB Arrival Time =	0.6869428	1.74515E-05	1.5	0
z	WB Arrival Time =	0.6869700	2.72172E-05	2.4	0
m	EB Arrival Time =	0.6869726	2.53183E-06	0.2	0
m	EB Arrival Time =	0.6870145	4.1956E-05	3.6	0
z	WB Arrival Time =	0.6870422	2.77145E-05	2.4	0
z	WB Arrival Time =	0.6870624	2.02094E-05	1.7	0
m	EB Arrival Time =	0.6870665	4.06901E-06	0.4	0
z	WB Arrival Time =	0.6870916	2.50922E-05	2.2	0
z	WB Arrival Time =	0.6871140	2.24248E-05	1.9	0
Z	WB Arrival Time =	0.6871515	3.74349E-05	3.2	0
z	WB Arrival Time =	0.6871783	2.68555E-05	2.3	0
z	WB Arrival Time =	0.6872079	2.96134E-05	2.6	0
z	WB Arrival Time =	0.6872262	1.82201E-05	1.6	0
z	WB Arrival Time =	0.6872637	3.75705E-05	3.2	0
z	WB Arrival Time =	0.6872937	2.9975E-05	2.6	0
z	WB Arrival Time =	0.6873096	1.59144E-05	1.4	0
z	WB Arrival Time =	0.6873886	7.90292E-05	6.8	0
m	EB Arrival Time =	0.6874312	4.2589E-05	3.7	0
m	EB Arrival Time =	0.6874615	3.02463E-05	2.6	0
z	WB Arrival Time =	0.6874768	1.53266E-05	1.3	0
z	WB Arrival Time =	0.6875146	3.77514E-05	3.3	0

899.1

4:15 - 4:30 PM:

Number of Gaps ≥ 7.1 = 13 PM Left-turn departures = 27 / 4 = 7

Traffic Tracker

Environment \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Environment 1.tdp

Data File \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv

Movement: Left-turn Arrivals into Grappone driveway (Critical headway = 4.1 seconds)

Detector		Time		Gap Size	Gap <u>>4</u> .1
m	EB Arrival Time =	0.6771084			
m	EB Arrival Time =	0.6771241	1.56883E-05	1.4	0
m	EB Arrival Time =	0.6771458	2.17466E-05	1.9	0
m	EB Arrival Time =	0.6771713	2.54539E-05	2.2	0
m	EB Arrival Time =	0.6771861	1.48745E-05	1.3	0
m	EB Arrival Time =	0.6772095	2.3329E-05	2.0	0
m	EB Arrival Time =	0.6772469	3.74349E-05	3.2	0
m	EB Arrival Time =	0.6772840	3.70732E-05	3.2	0
m	EB Arrival Time =	0.6773229	3.88817E-05	3.4	0
m	EB Arrival Time =	0.6773451	2.22439E-05	1.9	0
m	EB Arrival Time =	0.6773977	5.26259E-05	4.5	1
m	EB Arrival Time =	0.6774240	2.62225E-05	2.3	0
m	EB Arrival Time =	0.6774535	2.95229E-05	2.6	0
m	EB Arrival Time =	0.6774692	1.57335E-05	1.4	0
m	EB Arrival Time =	0.6774873	1.80845E-05	1.6	0
m	EB Arrival Time =	0.6775862	9.89222E-05	8.5	1
m	EB Arrival Time =	0.6776837	9.74754E-05	8.4	1
m	EB Arrival Time =	0.6777667	8.3053E-05	7.2	1
m	EB Arrival Time =	0.6777949	2.81214E-05	2.4	0
m	EB Arrival Time =	0.6781126	0.000317699	27.4	1
m	EB Arrival Time =	0.6781568	4.42618E-05	3.8	0
m	EB Arrival Time =	0.6781649	8.0476E-06	0.7	0
m	EB Arrival Time =	0.6781960	3.11053E-05	2.7	0
m	EB Arrival Time =	0.6782062	1.01725E-05	0.9	0
m	EB Arrival Time =	0.6782465	4.03284E-05	3.5	0
m	EB Arrival Time =	0.6782791	3.26425E-05	2.8	0
m	EB Arrival Time =	0.6783190	3.98311E-05	3.4	0
m	EB Arrival Time =	0.6783443	2.53635E-05	2.2	0
m	EB Arrival Time =	0.6783747	3.04272E-05	2.6	0
m	EB Arrival Time =	0.6784096	3.49031E-05	3.0	0
m	EB Arrival Time =	0.6784433	3.36824E-05	2.9	0
m	EB Arrival Time =	0.6784728	2.94325E-05	2.5	0
m	EB Arrival Time =	0.6784790	6.28436E-06	0.5	0
m	EB Arrival Time =	0.6785764	9.7385E-05	8.4	1
m	EB Arrival Time =	0.6786129	3.64855E-05	3.2	0
m	EB Arrival Time =	0.6786516	3.87008E-05	3.3	0
m	EB Arrival Time =	0.6787434	9.17336E-05	7.9	1
m	EB Arrival Time =	0.6787869	4.35836E-05	3.8	0
m	EB Arrival Time =	0.6788157	2.87996E-05	2.5	0
m	EB Arrival Time =	0.6788497	3.39536E-05	2.9	0
m	EB Arrival Time =	0.6789004	5.06818E-05	4.4	1
m	EB Arrival Time =	0.6791198	0.000219455	19.0	1
m	EB Arrival Time =	0.6791742	5.43439E-05	4.7	1
m	EB Arrival Time =	0.6792372	6.30697E-05	5.4	1
m	EB Arrival Time =	0.6792646	2.73528E-05	2.4	0
m	EB Arrival Time =	0.6792858	2.12493E-05	1.8	0
m	EB Arrival Time =	0.6793102	2.43689E-05	2.1	0
m	EB Arrival Time =	0.6793369	2.67198E-05	2.3	0
m	EB Arrival Time =	0.6794247	8.78002E-05	7.6	1
m	EB Arrival Time =	0.6794543	2.95681E-05	2.6	0

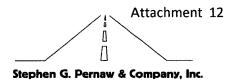
Traffic Tracker

Environment \STEVE-PC\Network\Projects\2150A\Traffic Tracker\Environment 1.tdp

Data File \STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv

Movement: Left-turn Arrivals into Grappone driveway (Critical headway = 4.1 seconds)

Detector		Time		Gap Size	Gap <u>>4</u> .1
m	EB Arrival Time =	0.6795101	5.58359E-05	4.8	1
m	EB Arrival Time =	0.6795321	2.19727E-05	1.9	0
m	EB Arrival Time =	0.6795613	2.91612E-05	2.5	0
m	EB Arrival Time =	0.6796025	4.11874E-05	3.6	0
m	EB Arrival Time =	0.6796299	2.74884E-05	2.4	0
m	EB Arrival Time =	0.6796843	5.43439E-05	4.7	1
m	EB Arrival Time =	0.6797729	8.85688E-05	7.7	1
m	EB Arrival Time =	0.6798742	0.000101364	8.8	1
m	EB Arrival Time =	0.6799508	7.65878E-05	6.6	1
m	EB Arrival Time =	0.6799909	4.01024E-05	3.5	0
m	EB Arrival Time =	0.6800662	7.52767E-05	6.5	1
m	EB Arrival Time =	0.6802150	0.000148835	12.9	1
m	EB Arrival Time =	0.6802757	6.07187E-05	5.2	1
m	EB Arrival Time =	0.6803095	3.37728E-05	2.9	0
m	EB Arrival Time =	0.6803426	3.30494E-05	2.9	0
m	EB Arrival Time =	0.6803849	4.23629E-05	3.7	0
m	EB Arrival Time =	0.6804352	5.02749E-05	4.3	1
m	EB Arrival Time =	0.6804596	2.43689E-05	2.1	0
m	EB Arrival Time =	0.6807084	0.000248797	21.5	1
m	EB Arrival Time =	0.6807551	4.67484E-05	4.0	0
m	EB Arrival Time =	0.6807766	2.14753E-05	1.9	0
m	EB Arrival Time =	0.6808482	7.15694E-05	6.2	1
m	EB Arrival Time =	0.6809109	6.27532E-05	5.4	1
m	EB Arrival Time =	0.6811158	0.000204852	17.7	1
m i	EB Arrival Time =	0.6811339	1.80845E-05	1.6	0
m	EB Arrival Time =	0.6811577	2.38263E-05	2.1	0
m	EB Arrival Time =	0.6811864	2.87543E-05	2.5	0
m	EB Arrival Time =	0.6812111	2.46401E-05	2.1	0
m	EB Arrival Time =	0.6812961	8.49971E-05	7.3	1
m	EB Arrival Time =	0.6813306	3.44962E-05	3.0	o O
m	EB Arrival Time =	0.6814190	8.84332E-05	7.6	1
m	EB Arrival Time =	0.6819584	0.000539415	46.6	i
m	EB Arrival Time =	0.6819805	2.21083E-05	1.9	Ö
m	EB Arrival Time =	0.6820022	2.16562E-05	1.9	0
m	EB Arrival Time =	0.6821520	0.000149785	12.9	1
m	EB Arrival Time =	0.6823805	0.000143763	19.7	1
m	EB Arrival Time =	0.6824259	4.54373E-05	3.9	Ö
m	EB Arrival Time =	0.6824491	2.31481E-05	2.0	0
m	EB Arrival Time =	0.6824759	2.68555E-05	2.3	0
m	EB Arrival Time =	0.6825126	3.66663E-05	3.2	0
	EB Arrival Time =	0.6825443	3.16931E-05	2.7	0
m	EB Arrival Time =	0.6825810	3.66663E-05	3.2	ő
m	EB Arrival Time =	0.6826370	5.60619E-05	4.8	1
m	EB Arrival Time =	0.6827027	6.56467E-05	5.7	1
m	EB Arrival Time =	0.6827374	3.4677E-05	3.0	0
m	EB Arrival Time =	0.6827555	1.81297E-05	1.6	0
m	EB Arrival Time =	0.6827876	3.21452E-05	2.8	0
m	EB Arrival Time =	0.6828226	3.49935E-05	3.0	0
m	EB Arrival Time =	0.6828829	6.02666E-05	5.2	1
m	EB Arrival Time =				0
m	LO VIIIAN LIIIE -	0.6829271	4.41714E-05	3.8	U


Traffic Tracker

Environment \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Environment 1.tdp

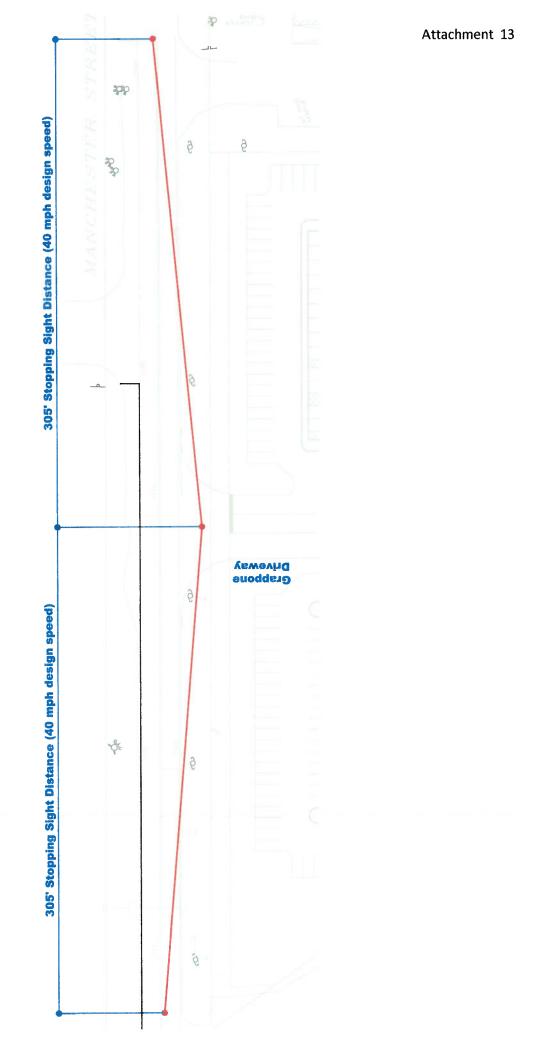
Data File \\STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv

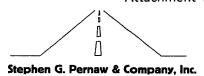
Movement: Left-turn Arrivals into Grappone driveway (Critical headway = 4.1 seconds)

Detector		Time		Gap Size	Gap <u>>4</u> .1
m	EB Arrival Time =	0.6833710	0.000443974	38.4	1
m	EB Arrival Time =	0.6834156	4.45331E-05	3.8	0
m	EB Arrival Time =	0.6834445	2.889E-05	2.5	0
m	EB Arrival Time =	0.6834699	2.54539E-05	2.2	0
m	EB Arrival Time =	0.6834875	1.7542E-05	1.5	0
m	EB Arrival Time =	0.6835069	1.93956E-05	1.7	0
m	EB Arrival Time =	0.6835316	2.47758E-05	2.1	0
m	EB Arrival Time =	0.6835542	2.26056E-05	2.0	0
m	EB Arrival Time =	0.6835794	2.51374E-05	2.2	0
m	EB Arrival Time =	0.6836032	2.38715E-05	2.1	0
m	EB Arrival Time =	0.6836395	3.62142E-05	3.1	0
m	EB Arrival Time =	0.6836704	3.09245E-05	2.7	0
m	EB Arrival Time =	0.6836948	2.44141E-05	2.1	0
m	EB Arrival Time =	0.6837156	2.07972E-05	1.8	0
m	EB Arrival Time =	0.6837459	3.03367E-05	2.6	0
m	EB Arrival Time =	0.6837648	1.88531E-05	1.6	0
m	EB Arrival Time =	0.6837835	1.87627E-05	1.6	0
m	EB Arrival Time =	0.6839635	0.000179941	15.5	1
m	EB Arrival Time =	0.6839839	2.03903E-05	1.8	0
m	EB Arrival Time =	0.6840107	2.68555E-05	2.3	0
m	EB Arrival Time =	0.6840583	4.75622E-05	4.1	1
m	EB Arrival Time =	0.6840711	1.27948E-05	1.1	0
m	EB Arrival Time =	0.6840957	2.46401E-05	2.1	0
m	EB Arrival Time =	0.6841286	3.29138E-05	2.8	0
m	EB Arrival Time =	0.6841540	2.53183E-05	2.2	0
m	EB Arrival Time =	0.6841993	4.53016E-05	3.9	0
m	EB Arrival Time =	0.6842235	2.42332E-05	2.1	0
m	EB Arrival Time =	0.6842470	2.35098E-05	2.0	0
m	EB Arrival Time =	0.6842765	2.94777E-05	2.5	0
m	EB Arrival Time =	0.6842976	2.10684E-05	1.8	0
m	EB Arrival Time =	0.6843295	3.19191E-05	2.8	0
m	EB Arrival Time =	0.6843548	2.53635E-05	2.2	0
m	EB Arrival Time =	0.6844146	5.9724E-05	5.2	1
m	EB Arrival Time =	0.6844477	3.31398E-05	2.9	0
m	EB Arrival Time =	0.6844752	2.75336E-05	2.4	0
m	EB Arrival Time =	0.6844933	1.80393E-05	1.6	0
m	EB Arrival Time =	0.6845294	3.60786E-05	3.1	0
m	EB Arrival Time =	0.6845626	3.32303E-05	2.9	0
m	EB Arrival Time =	0.6845886	2.60417E-05	2.3	0
m	EB Arrival Time =	0.6846108	2.21535E-05	1.9	0
m	EB Arrival Time =	0.6846477	3.69376E-05	3.2	0
m	EB Arrival Time =	0.6847646	0.000116916	10.1	1
m	EB Arrival Time =	0.6848174	5.28067E-05	4.6	1
m	EB Arrival Time =	0.6848374	1.99382E-05	1.7	0
m	EB Arrival Time =	0.6849681	0.000130706	11.3	1
m	EB Arrival Time =	0.6850158	4.76978E-05	4.1	1
m	EB Arrival Time =	0.6850428	2.69911E-05	2.3	0
m	EB Arrival Time =	0.6850671	2.43236E-05	2.1	0
m	EB Arrival Time =	0.6851330	6.5918E-05	5.7	1
m	EB Arrival Time =	0.6851860	5.29876E-05	4.6	1

Traffic Tracker

Environment \STEVE-PC\Network\Projects\2150A\Traffic Tracker\Environment 1.tdp

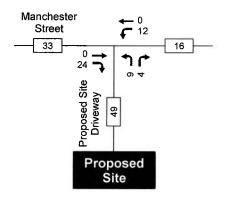

Data File \STEVE-PC\Network\Projects\2150A\Traffic Tracker\Interval 415 430.csv

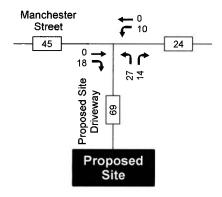

Movement: Left-turn Arrivals into Grappone driveway (Critical headway = 4.1 seconds)

Detector		Time		Gap Size	Gap <u>>4</u> .1
m	EB Arrival Time =	0.6854725	0.000286504	24.8	1
m	EB Arrival Time =	0.6854933	2.07972E-05	1.8	0
m	EB Arrival Time =	0.6855339	4.05545E-05	3.5	0
m	EB Arrival Time =	0.6855496	1.57335E-05	1.4	0
m	EB Arrival Time =	0.6856072	5.76443E-05	5.0	1
m	EB Arrival Time =	0.6856908	8.35956E-05	7.2	1
m	EB Arrival Time =	0.6857032	1.23427E-05	1.1	0
m	EB Arrival Time =	0.6857324	2.92065E-05	2.5	0
m	EB Arrival Time =	0.6857459	1.35634E-05	1.2	0
m	EB Arrival Time =	0.6857862	4.0238E-05	3.5	0
m	EB Arrival Time =	0.6858075	2.12945E-05	1.8	0
m	EB Arrival Time =	0.6858341	2.66294E-05	2.3	0
m	EB Arrival Time =	0.6858724	3.83391E-05	3.3	0
m	EB Arrival Time =	0.6860069	0.000134458	11.6	1
m	EB Arrival Time =	0.6863869	0.000380046	32.8	1
m	EB Arrival Time =	0.6864374	5.04557E-05	4.4	1
m	EB Arrival Time =	0.6864516	1.41963E-05	1.2	0
m	EB Arrival Time =	0.6864877	3.61238E-05	3.1	0
m	EB Arrival Time =	0.6865233	3.5536E-05	3.1	0
m	EB Arrival Time =	0.6865525	2.92517E-05	2.5	0
m	EB Arrival Time =	0.6866106	5.80964E-05	5.0	1
m	EB Arrival Time =	0.6866571	4.64771E-05	4.0	0
m	EB Arrival Time =	0.6867049	4.77883E-05	4.1	1
m	EB Arrival Time =	0.6867294	2.45045E-05	2.1	0
m	EB Arrival Time =	0.6868508	0.000121392	10.5	1
m	EB Arrival Time =	0.6869726	0.000121799	10.5	1
m	EB Arrival Time =	0.6870145	4.1956E-05	3.6	0
m	EB Arrival Time =	0.6870665	5.19929E-05	4.5	1
m	EB Arrival Time =	0.6874312	0.000364719	31.5	1
m	EB Arrival Time =	0.6874615	3.02463E-05	2.6	0

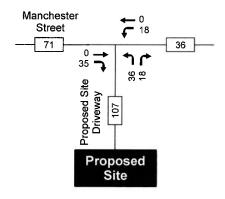
4:15 - 4:30 PM:

Number of Gaps \geq 4.1 = 55 PM Left-turn arrivals = 10 / 4 = 3




Banks Chevrolet Driveway Volumes (February 2022) 54 Manchester Street, Concord, New Hampshire

						Februa	ary 26, 20	022 (Satu	rday)		
				EBT	EBL	SBR	SBL	WBR	WBT	TOTAL	
	10:00	-	10:15	80	5	5	3	2	78	173	
	10:15	-	10:30	103	7	10	3	5	104	232	
	10:30	-	10:45	87	8	6	3	2	101	207	
	10:45	-	11:00	96	10	6	0	2	97	211	823
	11:00	-	11:15	84	4	14	3	7	89	201	851
	11:15	-	11:30	109	16	10	3	6	120	264	883
	11:30		11:45	126	1	6	3	3	82	221	897
	11:45		12:00	87	4	6	2	7	97	203	889
	12:00		12:15	96	6	7	5	3	122	239	927
	12:15		12:30	100	5	11	2	3	102	223	886
	12:30		12:45	96	7	12	4	7	116	242	907
	12:45		1:00	88	7	5	3	5	116	224	928
•	1:00	-	1:15	105	4	12	5	5	101	232	921
	1:15	-	1:30	83	5	10	7	6	119	230	928
	1:30	-	1:14	99	9	11	2	6	98	225	911
	1:45	-	2:00	96	1	6	6	3	96	208	895
Total Count	10 AM	-	2 PM	1535	99	137	54	72	1638		
Peak Hour	12 PM	-	1 PM	380	25	35	14	18	456	928	


Pernaw & Company, Inc

AM Peak Hour

PM Peak Hour

Saturday Peak Hour

Site Generated Traffic Volumes

NORTH

									Intersection
								0.7	Int Delay, s/veh
		R	NBR	NBL.	WBT	WBL	EBR	EBT	Movement
			7			_ ħ		1→	Lane Configurations
		4	4	9	1125	121	24	1126	Traffic Vol, veh/h
		4	4	9	1125	12	24	1126	Future Vol, veh/h
		0	0	0	0	0	0	0	Conflicting Peds, #/hr
		р	Stop	Stop	Free	Free	Free	Free	Sign Control
		е	None	-	None	-	None	-	RT Channelized
		0	0	-	-	25	-	-	Storage Length
		-	-	0	0	-	-	, # 0	Veh in Median Storage
		-		0	0	-	-	0	Grade, %
		0	90	90	95	95	90	90	Peak Hour Factor
		0	0	0	5	0	0	5	Heavy Vehicles, %
		4	4	10	1184	13	27	1251	Mvmt Flow
				Minor1	١	Major2	ı	Major1	Major/Minor I
		5	1265	2475	0	1278	0	0	Conflicting Flow All
		-		1265	-		~	_	Stage 1
		_	_	1210	_	_	_	-	Stage 2
		2	6.2	6.4	_	4.1	_	-	Critical Hdwy
		-		5.4	_	-	_	-	Critical Hdwy Stg 1
		-	-	5.4	-	-			Critical Hdwy Stg 2
		3	3.3	3.5	_	2.2	_	_	Follow-up Hdwy
			209	33	_	550	_	_	Pot Cap-1 Maneuver
		-		268	_	-	_	_	Stage 1
		-	_	285	-	_	_	_	Stage 2
					_		_	_	Platoon blocked, %
		9	209	32	_	550	_	-	Mov Cap-1 Maneuver
		-		32	_	-	_		Mov Cap-2 Maneuver
		_	_	268	_	-	_	_	Stage 1
		_	_	278	_		_		Stage 2
				•					
				NR		WR		FR	Annroach
						U. 1		J	
				1					THOM EOU
		WRT	WRI	FRR	FRT	NBI n2	NBI n1 I	ıt I	Minor Lane/Major Mym
	, , , , , , , , , , , , , , , ,								
					_				
					_				
				-	-				
				-	_			ı	
		, -	U. I	-	-	U. I	ı	'	TION SOUT MUR Q(VEII)
	,	0 - 3 - 7 - 3 -	WBL 550 0.023 11.7 B 0.1	NB 119.2 F EBR - - - -	EBT	209	NBLn1 NBLN NBLN		Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)

Intersection						-				
Int Delay, s/veh	6.1									
Movement	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	7>		NDE.	<u>₩</u>	T	T T			= = = =	
Traffic Vol, veh/h	1255			1170	27.	14 \				
Future Vol, veh/h	1255	18	10	1170	27	14				
Conflicting Peds, #/hr	0	0	0	0	0	0				
Sign Control	Free	Free	Free	Free	Stop	Stop				
RT Channelized	-	None	-	None	- Clop	None				
Storage Length	_	-	25	-		0				
Veh in Median Storage	e,#0	_	-	0	0	-				
Grade, %	0	_	_	0	0	_				
Peak Hour Factor	91	91	90	90	90	90				
Heavy Vehicles, %	4	0	0	2	0	0				
Mymt Flow	1379	20	11	1300	30	16				
		-1			-					
Major/Minor	Major1		Major2	ı	Minor1					
Conflicting Flow All	0		1399	0	2711	1389				
Stage 1	-	-		-	1389					
Stage 2	_	_	_	_	1322	_				
Critical Hdwy	_	_	4.1	_	6.4	6.2				
Critical Hdwy Stg 1	_	_	-	_	5.4	-				
Critical Hdwy Stg 2	_	_	_	_	5.4	_				
Follow-up Hdwy	_	_	2.2	_	3.5	3.3				
Pot Cap-1 Maneuver	_	_	495	_	~ 24	176				
Stage 1	-	_	-	_	233	-				
Stage 2	-	_	_	-	252	-				
Platoon blocked, %	_	_		_						
Mov Cap-1 Maneuver	_	_	495	-	~ 23	176				
Mov Cap-2 Maneuver	_	_	-	_	~ 23	_				
Stage 1	-	-	-	_	233	-				
Stage 2	-	-	-		246	-				
Ŭ										
Approach	EB		WB		NB					
HCM Control Delay, s	0		0.1	\$	365.4			·		
HCM LOS					F					
Minor Lane/Major Mvm	nt	NBLn1 I	NBLn2	EBT	EBR	WBL	WBT			
Capacity (veh/h)		23	176	-	-	495	-			
HCM Lane V/C Ratio		1.304		_	_	0.022	-			
HCM Control Delay (s)	\$	540.7	27.4	-	-	12.4	-			
lCM Lane LOS		F	D	-	-	В	-			
HCM 95th %tile Q(veh))	3.8	0.3	-	-	0.1	-			
Notes										
: Volume exceeds ca	nacity	\$· De	lav evo	eeds 30	00s	+· Comr	outation Not Defined	*· All maio	volume in	olatoon
. Volumo exceeds ca	paorty	ψ. υ	nay the	ocus U	000	·· Oom	ALGUOT NOT DEINIEU	. All major	volunio iii į	natoon

Intersection							
Int Delay, s/veh	1.6						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>		*		_ \	7	-
Traffic Vol, veh/h	683	35		829		18	No. of the last of
Future Vol, veh/h	683	35	18	829	36	18	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	25	-	-	0	
Veh in Median Storage	e, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	95	95	93	93	90	90	
Heavy Vehicles, %	2	0	0	2	0	0	
Mvmt Flow	719	37	19	891	40	20	
Major/Minor	Major1	ı	Major2	P	Minor1		
Conflicting Flow All	0	0	756	<u>'</u>	1667	738	
Stage 1	-	-	700	-	738	700	
Stage 2	_	_	_	_	929	-	
Critical Hdwy	_	-	4.1	_	6.4	6.2	
Critical Hdwy Stg 1	_	_	T. (_	5.4	0.2	
Critical Hdwy Stg 2	_		-	-	5.4	_	
Follow-up Hdwy	_	_	2.2	_	3.5	3.3	
Pot Cap-1 Maneuver	_	_	864	-	107	421	
Stage 1	_	_	-	-	476	1 Acr 1	
Stage 2	_	-	_	_	388	_	
Platoon blocked, %	_	-		_			
Mov Cap-1 Maneuver	_	_	864	_	105	421	
Mov Cap-2 Maneuver	-	-	-		105	-	
Stage 1	_		_		476	-	
Stage 2	_	_	_	_	379		
Jugo 2					5, 5		
Annragah	ED		/viD		NID		
Approach	EB		WB		NB 44		
HCM Control Delay, s	0		0.2		44 E		
HCM LOS					E		
Minor Lane/Major Mvm	nt	NBLn11	NBLn2	EBT	EBR		WBT
Capacity (veh/h)		105	421	-	-	864	-
HCM Lane V/C Ratio		0.381	0.048	-	-	0.022	-
HCM Control Delay (s))	59	14	-	-	9.3	-
HCM Lane LOS		F	В	-	-	Α	-
HCM 95th %tile Q(veh))	1.6	0.1	-	-	0.1	-

Intersection							
Int Delay, s/veh	0.8						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	- / ↑	J		ሻ	7	-
Traffic Vol, veh/h		1100	1123	12 v		141	
Future Vol, veh/h	30	1100	1123	12	7	14	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	25	-	-	-	150	-	
Veh in Median Storag	e,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	90	90	95	95	90	90	
Heavy Vehicles, %	0	5	5	0	0	0	
Mvmt Flow	33	1222	1182	13	8	16	
Major/Minor	Major1	ı	Major2	N	Minor2		
Conflicting Flow All	1195	0	-	0	2477	1189	
Stage 1	-	-	_	-	1189	-	
Stage 2	-	_	_	-	1288	_	
Critical Hdwy	4.1	_	_	_	6.4	6.2	
Critical Hdwy Stg 1	-	_	_	_	5.4	-	
Critical Hdwy Stg 2	_	_	_	_	5.4	_	
Follow-up Hdwy	2.2	_	_	-	3.5	3.3	
Pot Cap-1 Maneuver	591	-	_	_	33	231	
Stage 1	-	-	_	_	292		
Stage 2	-	-	_	-	261	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	591	-	_	-	31	231	
Mov Cap-2 Maneuver		_	_	-	31		
Stage 1	-	-	_	_	276	_	
Stage 2	_		_	_	261	_	
21230 2					_0,		
Approach	EB		WB		SB		
HCM Control Delay, s			0		66.6		
HCM LOS	0.3		U		00.0 F		
LICINI FOS					۲		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR:	SBLn1	
Capacity (veh/h)		591	•	-	-	31	231
HCM Lane V/C Ratio		0.056	-	-		0.251	
HCM Control Delay (s)	11.5	-	-	-	156.3	21.7
HCM Lane LOS		В	-	-	-	F	С
HCM 95th %tile Q(veh	1)	0.2	-	-	-	8.0	0.2

				.			
Intersection							
Int Delay, s/veh	1.4			. ,			
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	. 1	<u>₩</u>	VVDI	_SDL	7 T	
Traffic Vol, veh/h		√ 1243 √	1163	15.		17	
Future Vol, veh/h	26	1243	1163	15	10	17	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	_	None	_	None	<u>'</u> -	None	
Storage Length	25	-	-	-	0	0	
Veh in Median Storage	e,# -	0	0	-	0	_	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	91	91	90	90	90	90	
Heavy Vehicles, %	0	4	4	0	0	0	
Mvmt Flow	29	1366	1292	17	11	19	
Major/Minor	Major1	1	Major2	ľ	Minor2		
Conflicting Flow All	1309	0	-	0	2725	1301	
Stage 1	-	-	_	-	1301		
Stage 2	-		-	-	1424	_	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	_		5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	_	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	535	-	-	-	23	199	
Stage 1	-	-	-	-	258	-	
Stage 2	-	-	-	-	224	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	535	-	-	-	22	199	
Mov Cap-2 Maneuver	-	-	-	-	22	-	
Stage 1	-	-	-	-	244	-	
Stage 2	-	_	-	-	224	-	
<u> </u>							
Approach	EB		WB		SB		
HCM Control Delay, s	0.2		0		119.4		• • • • •
HCM LOS	0.2		J		F		
					-		
Minor Lone/Major M.	. +	EDI	EDT	MOT	MDD	CDI -4 C	ים ומי
Minor Lane/Major Mvn	III.	EBL	EBT	WBT	WBK :	SBLn1 S	
Capacity (veh/h)		535	-	-	-	22	199
HCM Central Polov (a)		0.053	-	-		0.505	
HCM Control Delay (s) HCM Lane LOS)	12.1	~	-	-	280	25
	١	B 0.2	-	-	-	F 1.5	D 0.3
HCM 95th %tile Q(veh	1	U.Z	-	=	-	1.0	0.5

· · · · · · · · · · · · · · · · · · ·							
Intersection							
Int Delay, s/veh	1	•					
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	<u> </u>		1		<u> </u>	7	d
Traffic Vol, veh/h	25	676		18			
Future Vol, veh/h	25	676	812	18	14	35	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	25	-	-	-	0	0	
Veh in Median Storage	e,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	91	91	90	90	90	90	
Heavy Vehicles, %	0	742	4	0	0	0	
Mvmt Flow	27	743	902	20	16	39	
	Major1		Major2	_	/linor2		
Conflicting Flow All	922	0	-	0	1709	912	
Stage 1	-	-	-	-	912	-	
Stage 2	-	-	-	-	797	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	•	-	-	-	5.4	-	
Critical Hdwy Stg 2	0.0	-	-	-	5.4	-	
Follow-up Hdwy	2.2 749	-	-	-	3.5	3.3 335	
Pot Cap-1 Maneuver		-	•	-	101 395		
Stage 1 Stage 2	-	-	-	-	395 447	-	
Platoon blocked, %	-	-	-	-	741	-	
Mov Cap-1 Maneuver	749	-	-	-	97	335	
Mov Cap-1 Maneuver	-	-	-		97	-	
Stage 1	_	-	_	-	381	-	
Stage 2	-	_	-	_	447	-	
0.030 2							
Annroach	EB		WB		SB		
Approach HCM Control Delay, s	0.4		0		26.3		
HCM LOS	0.4		U		20.3 D		
I IOIVI LOO					U		
						om	
Minor Lane/Major Mvm	<u>nt</u>	EBL	EBT	WBT		SBLn1 S	
Capacity (veh/h)		749	-	-	-	97	335
HCM Lane V/C Ratio		0.037	-	-	-	0.16	
HCM Control Delay (s)		10	-	-	-	49.1	17.2
HCM Lane LOS	١	A	-	-	-	E 0.5	C
HCM 95th %tile Q(veh))	0.1	-	-	-	0.5	0.4

Intersection: 1	: Pro	posed Sit	e Drive	way &	Mand	chester	Street
-----------------	-------	-----------	---------	-------	------	---------	--------

Movement	EB	WB	WB	NB	NB
Directions Served	TR	/L	Т	L	R
Maximum Queue (ft)	115	35	27	52	31
Average Queue (ft)	13	10	1	10	5
95th Queue (ft)	65	(34)	12	34	23
Link Distance (ft)	1178		55		1482
Upstream Blk Time (%)		0	0		
Queuing Penalty (veh)		0	0		
Storage Bay Dist (ft)		25		375	
Storage Blk Time (%)		4	0		
Queuing Penalty (veh)		48	0		

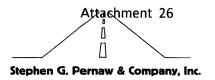
Movement	EB	EB	WB	SB	SB
Directions Served	L	T	TR	L	R
Maximum Queue (ft)	39	73	54	50	52
Average Queue (ft)	17	6	3	10	13
95th Queue (ft)	(43)	37	24	35	40
Link Distance (ft)	~	55	873		195
Upstream Blk Time (%)	0	0			
Queuing Penalty (veh)	0	4			
Storage Bay Dist (ft)	25			150	
Storage Blk Time (%)	9	0			
Queuing Penalty (veh)	96	0			
addaing renaity (veri)	50	Ū			

Network Summary

Intersection: 1: Proposed Site Driveway & M	anchester	Street
---	-----------	--------

Movement	EB	WB	WB	NB	NB
Directions Served	TR	L	Т	L	R
Maximum Queue (ft)	141	33	36	238	46
Average Queue (ft)	14	9	3	131	14
95th Queue (ft)	84	(32)	21	311	42
Link Distance (ft)	1178		54	1482	1482
Upstream Blk Time (%)		0	0		
Queuing Penalty (veh)		0	1		
Storage Bay Dist (ft)		25			
Storage Blk Time (%)		7	0		
Queuing Penalty (veh)		80	0		

Network Summary


Movement	EB	WB	WB	NB	NB
Directions Served	TR	L	Т	L	R
Maximum Queue (ft)	39	33	36	80	38
Average Queue (ft)	2	9	2	26	14
95th Queue (ft)	16	(32)	17	61	39
Link Distance (ft)	1178		54	1482	1482
Upstream Blk Time (%)		0	0		
Queuing Penalty (veh)		0	0		
Storage Bay Dist (ft)		25			
Storage Blk Time (%)		2	0		
Queuing Penalty (veh)		13	0		

Movement	EB	EB	WB	SB	SB
Directions Served	L	Τ	TR	L	R
Maximum Queue (ft)	35	56	26	45	52
Average Queue (ft)	13	4	1	13	22
95th Queue (ft)	(39)	27	13	38	50
Link Distance (ft)		54	824	133	133
Upstream Blk Time (%)	0	0			
Queuing Penalty (veh)	0	1			
Storage Bay Dist (ft)	25				
Storage Blk Time (%)	4	0			
Queuing Penalty (veh)	25	0			

Network Summary

Banks Driveway - Eastbound Left-Turn Queues

	Dariks		/24/2021	Queues	
R = Rolling Le	eft Turn, no full s	top			DMD 146
		AM Peak Hour Queue			PM Peak Hour Queue
1	7:18:17	R	1	4:01:00	1
2	7:21:01	R	2	4:01:28	R
3	7:21:20	R	3	4:04:22	R
4	7:22:37	R	4	4:06:53	R
5	7:24:58	2	5	4:10:27	2
6	7:25:05	2	6	4:10:30	
7	7:25:40	. 1	7	4:13:58	R
8	7:26:16	1	8	4:14:25	R
9	7:28:56	1	9	4:16:59	1
10	7:31:02	1	10	4:17:17	R
11	7:33:18	R	11	4:26:47	R
12	7:35:23	R	12	4:29:22	1
13	7:38:25	R	13	4:29:47	R
14	7:38:37	R	14	4:35:37	1
15	7:39:40	R	15	4:37:10	1
16	7:39:56	1	16	4:39:00	1
17	7:44:28	1	17	4:41:49	1
18	7:45:48	1	18	4:44:50	1
19	7:47:01	R	19	4:45:08	R
20	7:47:47	R	20	4:45:22	R
21	7:48:27	R	21	4:47:25	1
22	7:55:57	R	22	4:49:55	R
23	7:59:18	1	23	4:50:28	R
24	8:00:34	2	24	4:51:16	R
25	8:00:54	2	25	4:55:07	R
26	8:03:01	R	26	4:57:40	1
27	8:05:58	R			
28	8:08:18	R			
29	8:10:08	R			
30	8:11:15	R			
31	8:14:35	R			

Banks Driveway - Eastbound Left-Turn Queues (Saturday 2/26/2022)

R = Rolling Left Turn, no full stop

	<u>(</u>	<u>Queue</u>			Queue			Queue			<u>Queue</u>
1	10:00:46	R	31	11:00:38	1	56	12:00:22	R	81	1:01:09	R
2	10:03:47	R	32	11:05:08	1	57	12:01:39	R	82	1:07:53	R
3	10:03:51	R	33	11:07:56	R	58	12:05:23	R	83	1:10:16	R
4	10:09:14	1	34	11:12:06	R	59	12:08:15	R	84	1:10:52	1
5	10:11:01	1	35	11:15:40	R	60	12:11:24	R	85	1:21:45	R
6	10:16:23	1	36	11:15:51	1	61	12:12:50	1	86	1:22:50	R
7	10:24:13	R	37	11:16:24	1	62	12:15:17	R	87	1:22:56	R
8	10:26:00	R	38	11:17:27	R	63	12:15:31	R	88	1:26:12	R
9	10:26:38	R	39	11:19:21	R	64	12:24:09	R	89	1:26:44	R
10	10:26:55	1	40	11:19:59	1	65	12:24:25	R	90	1:32:20	R
11	10:27:07	R	41	11:23:08	R	66	12:29:19	1	91	1:35:46	1
12	10:29:15	R	42	11:23:27	1	67	12:30:11	1	92	1:39:33	1
13	10:30:49		43	11:23:42	R	68	12:32:11	R	93	1:39:48	1
14	10:30:54	2	44	11:24:13	1	69	12:36:26	1	94	1:40:27	R
15	10:31:38	R	45	11:24:29	R	70	12:39:35	1	95	1:40:53	R
16	10:33:36	R	46	11:24:54	1	71	12:39:43	R	96	1:42:44	R
17	10:38:13	1	47	11:25:03	_	72	12:44:44	R	97	1:42:51	R
18	10:38:39	1	48	11:28:06	2	73	12:44:49	R	98	1:43:03	1
19	10:41:26	R	49	11:28:20	1	74	12:49:41	R	99	1:47:50	1
20	10:43:14	R	50	11:28:52	R	75	12:50:09	R			
21	10:45:11		51	11:33:52	R	76	12:52:19	2			
22	10:50:02	2	52	11:46:07	1`	77	12:52:22				
23	10:50:13	R	53	11:47:27	1	78	12:54:29	R			
24	10:52:02	R	54	11:48:53	1	79	12:54:34	R			
25	10:53:52	R	55	11:51:55		80	12:56:14	R			
26	10:56:12	R									
27	10:57:49	R									
28	10:58:23	R									
29	10:58:36	R				Sa	nturday Midd	lav			
30	10:58:40	R					reet Peak H				

25 EB Left-Turn Arrivals

19 EB Left-Turn Arrivals

25 EB Left-Turn Arrivals

30 EB Left-Turn Arrivals